my_awesome_wnut_model

This model is a fine-tuned version of distilbert/distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0770
  • Precision: 0.9083
  • Recall: 0.8423
  • F1: 0.8741
  • Accuracy: 0.9790

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 118 0.1285 0.8468 0.5851 0.6920 0.9557
No log 2.0 236 0.0904 0.8260 0.7780 0.8013 0.9673
No log 3.0 354 0.0837 0.8756 0.7739 0.8216 0.9714
No log 4.0 472 0.0796 0.8810 0.7988 0.8379 0.9738
0.1058 5.0 590 0.0780 0.9106 0.8029 0.8534 0.9762
0.1058 6.0 708 0.0738 0.9036 0.8361 0.8685 0.9782
0.1058 7.0 826 0.0744 0.9 0.8402 0.8691 0.9784
0.1058 8.0 944 0.0761 0.9002 0.8423 0.8703 0.9782
0.0232 9.0 1062 0.0766 0.9067 0.8465 0.8755 0.9791
0.0232 10.0 1180 0.0770 0.9083 0.8423 0.8741 0.9790

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cpu
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
24
Safetensors
Model size
65.2M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Saitk/my_awesome_wnut_model

Finetuned
(236)
this model