![Indic Parler Logo](https://huggingface.co/MultiLlasa/Llasa-1B-Multilingual-German/resolve/main/cover.webp)
Llasa-1B-Multilingual-German
This model was trained on top of HKUSTAudio/Llasa-1B-Multilingual.
Model Overview
This text-to-speech (TTS) model has been trained on a custom dataset representing 7,000 hours of high-quality audio data. The audio data consisted of permissive podcasts, lectures and other OER data.
Training Details
- Base Model: HKUSTAudio/Llasa-1B-Multilingual
- Dataset: A custom dataset comprising 7,000 hours of data.
- Compute Resources: The training was performed using 4x L40s GPUs.
- Raw Training Time: Approximately 20 hours not included the data preprocessing with xcodec2 (note: training was restarted after 3 crashes).
Huge thanks to Hugging Face for their generous GPU grant! π€
π¨βπ» Installation
First install the following pip packages:
pip install xcodec2
pip install torch==2.6.0 torchaudio
Install it in the two steps given above! If you get the error message with "flex attention" make sure to install torch==2.6.0 torchaudio
. If you get an torchaudio error, make sure to update and match it to the torch 2.6.0 version.
π οΈ Usage
π² Random voice
A basic example using the Hugging Face Transformers:
import os
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import soundfile as sf
llasa_1b_german = 'MultiLlasa/Llasa-1B-Multilingual-German'
# Loading the model
tokenizer = AutoTokenizer.from_pretrained(llasa_1b_german)
model = AutoModelForCausalLM.from_pretrained(llasa_1b_german)
model.to('cuda')
# Load XCodec2 model
from xcodec2.modeling_xcodec2 import XCodec2Model
model_path = "HKUST-Audio/xcodec2"
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.cuda()
input_text = "\"WeiΓt du was, Hoppi\", sagte der weise Uhu, \"manchmal ist es gar nicht so wichtig, das Ende des Regenbogens zu finden. Das SchΓΆnste ist doch, dass wir alle zusammen dieses Abenteuer erleben!"
def extract_speech_ids(speech_tokens_str):
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith('<|s_') and token_str.endswith('|>'):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
with torch.no_grad():
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>"}
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
)
input_ids = input_ids.to('cuda')
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
outputs = model.generate(
input_ids,
max_length=2048,
eos_token_id=speech_end_id,
do_sample=True,
top_p=1,
temperature=0.8,
)
generated_ids = outputs[0][input_ids.shape[1]:-1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
speech_tokens = extract_speech_ids(speech_tokens)
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
gen_wav = Codec_model.decode_code(speech_tokens)
sf.write("generation.wav", gen_wav[0, 0, :].cpu().numpy(), 16000)
π― Using a specific speaker
An example with speaker reference:
import torch
import torchaudio
import tempfile
import soundfile as sf
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# Input your reference audio and optional the text
sample_audio_path = "male.wav"
sample_audio_text = None # Set it to none to use whisper for transcription
# Input the target text here
target_text = "Und apropos Spannungen und UnfΓ€lle, in Stuttgart gibt es auch einige Schlagzeilen. Die Polizei sucht Zeugen, nachdem in der Stadt mehrere Autoscheiben eingeschlagen wurden. Und gestern kam es im Stuttgarter Osten zu einer Verfolgungsjagd mit einer jungen BMW-Fahrerin, die vor einer Polizeistreife geflΓΌchtet ist."
output_filename = "no_speaker_example.wav"
#### Do not edit below ####
llasa_model_name = "MultiLlasa/Llasa-1B-Multilingual-German"
tokenizer = AutoTokenizer.from_pretrained(llasa_model_name)
model = AutoModelForCausalLM.from_pretrained(llasa_model_name)
model.to("cuda")
from xcodec2.modeling_xcodec2 import XCodec2Model
codec_model_path = "HKUST-Audio/xcodec2"
Codec_model = XCodec2Model.from_pretrained(codec_model_path)
Codec_model.cuda()
whisper_turbo_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device="cuda",
)
def ids_to_speech_tokens(speech_ids):
speech_tokens_str = []
for speech_id in speech_ids:
speech_tokens_str.append(f"<|s_{speech_id}|>")
return speech_tokens_str
waveform, sample_rate = torchaudio.load(sample_audio_path)
max_secs = 15
if len(waveform[0]) / sample_rate > 15:
print("Warning: Trimming audio to first 15secs.")
waveform = waveform[:, : sample_rate * 15]
waveform = torch.nn.functional.pad( waveform, (0, int(sample_rate * 0.5)), "constant", 0)
if waveform.size(0) > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
if sample_audio_text is None:
print("Transcribing audio...")
transcription = whisper_turbo_pipe(waveform[0].numpy())["text"].strip()
else:
transcription = sample_audio_text
print("Transcription:", transcription)
if len(target_text) == 0:
raise ValueError("Target text must be provided!")
elif len(target_text) > 500:
print("Text is too long; trimming to first 500 characters.")
target_text = target_text[:500]
input_text = transcription + " " + target_text
with torch.no_grad():
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
vq_code_prompt = vq_code_prompt[0, 0, :]
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + "".join(speech_ids_prefix)}
]
input_ids = tokenizer.apply_chat_template(chat, tokenize=True, return_tensors="pt", continue_final_message=True)
input_ids = input_ids.to("cuda")
speech_end_id = tokenizer.convert_tokens_to_ids("<|SPEECH_GENERATION_END|>")
outputs = model.generate(
input_ids,
max_length=2048,
eos_token_id=speech_end_id,
do_sample=True,
top_p=1,
temperature=0.8,
min_new_tokens=4, # Fix so the model does not directly stop
)
generated_ids = outputs[0][input_ids.shape[1] - len(speech_ids_prefix) : -1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
speech_tokens = extract_speech_ids(speech_tokens)
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
gen_wav = Codec_model.decode_code(speech_tokens)
gen_wav = gen_wav[:, :, prompt_wav.shape[1] :]
sf.write(output_filename, gen_wav[0, 0, :].cpu().numpy(), 16000)
Tips
- With a reference speaker, audio glitches can happen. Try to increase the temperature to get better results.
License
This project is licensed under the CC-BY-NC-4.0 license.
Acknowledgments
- Hugging Face: Thanks for the grant that made this project possible.
- HKUSTAudio: for providing the model open source and a great inference, training and preprocessing (xcodec2) script!
- Downloads last month
- 33
Model tree for MultiLlasa/Llasa-1B-Multilingual-German
Base model
meta-llama/Llama-3.2-1B-Instruct