SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("vazish/all-MiniLM-L6-v2-fine-tuned_0")
# Run inference
sentences = [
    'Tidal - High-Fidelity Music Streaming with Master Quality Audio',
    'Walmart - Everyday Low Prices on Groceries, Electronics, and More',
    'Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9823
spearman_cosine 0.2608

Training Details

Training Dataset

Unnamed Dataset

  • Size: 49,800 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 10 tokens
    • mean: 14.76 tokens
    • max: 21 tokens
    • min: 10 tokens
    • mean: 14.64 tokens
    • max: 21 tokens
    • min: 0.0
    • mean: 0.04
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    TripAdvisor - Hotel Reviews, Photos, and Travel Forums Docker Hub - Container Image Repository for DevOps Environments 0.0
    Mastodon - Decentralized Social Media for Niche Communities Allrecipes - User-Submitted Recipes, Reviews, and Cooking Tips 0.0
    YouTube Music - Music Videos, Official Albums, and Live Performances ESPN - Sports News, Live Scores, Stats, and Highlights 0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss spearman_cosine
0.0372 500 0.0218 -
0.0745 1000 0.0151 -
0.1117 1500 0.0113 -
0.1490 2000 0.0076 -
0.1862 2500 0.0063 -
0.2234 3000 0.0054 -
0.2607 3500 0.0045 -
0.2979 4000 0.0041 -
0.3351 4500 0.0027 -
0.3724 5000 0.0028 -
0.4096 5500 0.0026 -
0.4469 6000 0.0021 -
0.4841 6500 0.0019 -
0.5213 7000 0.0022 -
0.5586 7500 0.0017 -
0.5958 8000 0.0018 -
0.6331 8500 0.0015 -
0.6703 9000 0.0015 -
0.7075 9500 0.0018 -
0.7448 10000 0.0014 -
0.7820 10500 0.0017 -
0.8192 11000 0.0012 -
0.8565 11500 0.0014 -
0.8937 12000 0.001 -
0.9310 12500 0.0011 -
0.9682 13000 0.001 -
1.0054 13500 0.0009 -
1.0427 14000 0.0011 -
1.0799 14500 0.001 -
1.1172 15000 0.0009 -
1.1544 15500 0.0008 -
1.1916 16000 0.001 -
1.2289 16500 0.0011 -
1.2661 17000 0.0011 -
1.3033 17500 0.0006 -
1.3406 18000 0.0011 -
1.3778 18500 0.0008 -
1.4151 19000 0.0011 -
1.4523 19500 0.0009 -
1.4895 20000 0.0011 -
1.5268 20500 0.0009 -
1.5640 21000 0.0009 -
1.6013 21500 0.0008 -
1.6385 22000 0.0005 -
1.6757 22500 0.001 -
1.7130 23000 0.0008 -
1.7502 23500 0.0007 -
1.7874 24000 0.0007 -
1.8247 24500 0.0008 -
1.8619 25000 0.001 -
1.8992 25500 0.0009 -
1.9364 26000 0.0008 -
1.9736 26500 0.0009 -
2.0109 27000 0.0007 -
2.0481 27500 0.0006 -
2.0854 28000 0.0007 -
2.1226 28500 0.0006 -
2.1598 29000 0.0007 -
2.1971 29500 0.001 -
2.2343 30000 0.0006 -
2.2715 30500 0.0006 -
2.3088 31000 0.001 -
2.3460 31500 0.0007 -
2.3833 32000 0.0008 -
2.4205 32500 0.0006 -
2.4577 33000 0.0007 -
2.4950 33500 0.0007 -
2.5322 34000 0.001 -
2.5694 34500 0.0007 -
2.6067 35000 0.0007 -
2.6439 35500 0.0008 -
2.6812 36000 0.0007 -
2.7184 36500 0.0006 -
2.7556 37000 0.0007 -
2.7929 37500 0.0007 -
2.8301 38000 0.0005 -
2.8674 38500 0.0009 -
2.9046 39000 0.0006 -
2.9418 39500 0.0007 -
2.9791 40000 0.0008 -
-1 -1 - 0.2608

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Mozilla/smart-tab-embedding-fine-tuned

Quantized
(25)
this model

Evaluation results