SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("vazish/all-MiniLM-L6-v2-fine-tuned_0")
# Run inference
sentences = [
'Tidal - High-Fidelity Music Streaming with Master Quality Audio',
'Walmart - Everyday Low Prices on Groceries, Electronics, and More',
'Notion - Integrated Workspace for Notes, Tasks, Databases, and Wikis',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9823 |
spearman_cosine | 0.2608 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 49,800 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 10 tokens
- mean: 14.76 tokens
- max: 21 tokens
- min: 10 tokens
- mean: 14.64 tokens
- max: 21 tokens
- min: 0.0
- mean: 0.04
- max: 1.0
- Samples:
sentence_0 sentence_1 label TripAdvisor - Hotel Reviews, Photos, and Travel Forums
Docker Hub - Container Image Repository for DevOps Environments
0.0
Mastodon - Decentralized Social Media for Niche Communities
Allrecipes - User-Submitted Recipes, Reviews, and Cooking Tips
0.0
YouTube Music - Music Videos, Official Albums, and Live Performances
ESPN - Sports News, Live Scores, Stats, and Highlights
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | spearman_cosine |
---|---|---|---|
0.0372 | 500 | 0.0218 | - |
0.0745 | 1000 | 0.0151 | - |
0.1117 | 1500 | 0.0113 | - |
0.1490 | 2000 | 0.0076 | - |
0.1862 | 2500 | 0.0063 | - |
0.2234 | 3000 | 0.0054 | - |
0.2607 | 3500 | 0.0045 | - |
0.2979 | 4000 | 0.0041 | - |
0.3351 | 4500 | 0.0027 | - |
0.3724 | 5000 | 0.0028 | - |
0.4096 | 5500 | 0.0026 | - |
0.4469 | 6000 | 0.0021 | - |
0.4841 | 6500 | 0.0019 | - |
0.5213 | 7000 | 0.0022 | - |
0.5586 | 7500 | 0.0017 | - |
0.5958 | 8000 | 0.0018 | - |
0.6331 | 8500 | 0.0015 | - |
0.6703 | 9000 | 0.0015 | - |
0.7075 | 9500 | 0.0018 | - |
0.7448 | 10000 | 0.0014 | - |
0.7820 | 10500 | 0.0017 | - |
0.8192 | 11000 | 0.0012 | - |
0.8565 | 11500 | 0.0014 | - |
0.8937 | 12000 | 0.001 | - |
0.9310 | 12500 | 0.0011 | - |
0.9682 | 13000 | 0.001 | - |
1.0054 | 13500 | 0.0009 | - |
1.0427 | 14000 | 0.0011 | - |
1.0799 | 14500 | 0.001 | - |
1.1172 | 15000 | 0.0009 | - |
1.1544 | 15500 | 0.0008 | - |
1.1916 | 16000 | 0.001 | - |
1.2289 | 16500 | 0.0011 | - |
1.2661 | 17000 | 0.0011 | - |
1.3033 | 17500 | 0.0006 | - |
1.3406 | 18000 | 0.0011 | - |
1.3778 | 18500 | 0.0008 | - |
1.4151 | 19000 | 0.0011 | - |
1.4523 | 19500 | 0.0009 | - |
1.4895 | 20000 | 0.0011 | - |
1.5268 | 20500 | 0.0009 | - |
1.5640 | 21000 | 0.0009 | - |
1.6013 | 21500 | 0.0008 | - |
1.6385 | 22000 | 0.0005 | - |
1.6757 | 22500 | 0.001 | - |
1.7130 | 23000 | 0.0008 | - |
1.7502 | 23500 | 0.0007 | - |
1.7874 | 24000 | 0.0007 | - |
1.8247 | 24500 | 0.0008 | - |
1.8619 | 25000 | 0.001 | - |
1.8992 | 25500 | 0.0009 | - |
1.9364 | 26000 | 0.0008 | - |
1.9736 | 26500 | 0.0009 | - |
2.0109 | 27000 | 0.0007 | - |
2.0481 | 27500 | 0.0006 | - |
2.0854 | 28000 | 0.0007 | - |
2.1226 | 28500 | 0.0006 | - |
2.1598 | 29000 | 0.0007 | - |
2.1971 | 29500 | 0.001 | - |
2.2343 | 30000 | 0.0006 | - |
2.2715 | 30500 | 0.0006 | - |
2.3088 | 31000 | 0.001 | - |
2.3460 | 31500 | 0.0007 | - |
2.3833 | 32000 | 0.0008 | - |
2.4205 | 32500 | 0.0006 | - |
2.4577 | 33000 | 0.0007 | - |
2.4950 | 33500 | 0.0007 | - |
2.5322 | 34000 | 0.001 | - |
2.5694 | 34500 | 0.0007 | - |
2.6067 | 35000 | 0.0007 | - |
2.6439 | 35500 | 0.0008 | - |
2.6812 | 36000 | 0.0007 | - |
2.7184 | 36500 | 0.0006 | - |
2.7556 | 37000 | 0.0007 | - |
2.7929 | 37500 | 0.0007 | - |
2.8301 | 38000 | 0.0005 | - |
2.8674 | 38500 | 0.0009 | - |
2.9046 | 39000 | 0.0006 | - |
2.9418 | 39500 | 0.0007 | - |
2.9791 | 40000 | 0.0008 | - |
-1 | -1 | - | 0.2608 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Mozilla/smart-tab-embedding-fine-tuned
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Pearson Cosine on Unknownself-reported0.982
- Spearman Cosine on Unknownself-reported0.261