spa-eng-pos-tagging-v6

This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3128
  • Accuracy: 0.9056
  • Precision: 0.9032
  • Recall: 0.8293
  • F1: 0.8345
  • Hamming Loss: 0.0944

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Hamming Loss
1.0141 1.0 1744 0.7804 0.7158 0.7328 0.6183 0.6345 0.2842
0.6292 2.0 3488 0.5384 0.7973 0.8111 0.7029 0.7213 0.2027
0.4438 3.0 5232 0.4236 0.8462 0.8346 0.7762 0.7732 0.1538
0.3626 4.0 6976 0.3856 0.8651 0.8524 0.7933 0.7903 0.1349
0.3141 5.0 8720 0.3697 0.8712 0.8688 0.7998 0.8028 0.1288
0.2575 6.0 10464 0.3689 0.8751 0.8758 0.8003 0.8058 0.1249
0.2117 7.0 12208 0.3329 0.8890 0.8832 0.8169 0.8184 0.1110
0.1864 8.0 13952 0.3235 0.9010 0.8946 0.8278 0.8293 0.0990
0.1555 9.0 15696 0.3128 0.9056 0.9032 0.8293 0.8345 0.0944
0.1322 10.0 17440 0.3311 0.9088 0.9010 0.8376 0.8377 0.0912
0.1111 11.0 19184 0.3394 0.9101 0.9081 0.8319 0.8383 0.0899
0.0874 12.0 20928 0.3472 0.9148 0.9100 0.8407 0.8440 0.0852
0.0659 13.0 22672 0.3635 0.9131 0.9072 0.8400 0.8422 0.0869
0.0608 14.0 24416 0.3560 0.9187 0.9140 0.8452 0.8482 0.0813

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3
Downloads last month
182
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for MateiCv/spa-eng-pos-tagging-v6

Finetuned
(238)
this model