metadata
language:
- ru
license: apache-2.0
tags:
- generated_from_trainer
base_model: openai/whisper-tiny
datasets:
- bond005/podlodka_speech
metrics:
- wer
model-index:
- name: whisper-tiny-ru
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Podlodka Speech
type: bond005/podlodka_speech
args: 'config: ru, split: test'
metrics:
- type: wer
value: 83.72703412073491
name: Wer
whisper-tiny-ru
This model is a fine-tuned version of openai/whisper-tiny on the Podlodka Speech dataset. It achieves the following results on the evaluation set:
- Loss: 1.2475
- Wer: 83.7270
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 40
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.9999 | 4.4444 | 40 | 1.2054 | 71.8285 |
0.4535 | 8.8889 | 80 | 1.1539 | 73.2283 |
0.2849 | 13.3333 | 120 | 1.1958 | 104.5494 |
0.1674 | 17.7778 | 160 | 1.2341 | 79.2651 |
0.1372 | 22.2222 | 200 | 1.2475 | 83.7270 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1