brand-safety-model

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4779
  • Accuracy: 0.8657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.581 1.0 112 1.4547 0.6798
0.9156 2.0 224 0.8586 0.7904
0.6402 3.0 336 0.6679 0.8292
0.5405 4.0 448 0.5595 0.8551
0.4553 5.0 560 0.5183 0.8534
0.3509 6.0 672 0.4825 0.8629
0.316 7.0 784 0.4786 0.8584
0.2506 8.0 896 0.4710 0.8618
0.2049 9.0 1008 0.4912 0.8567
0.1416 10.0 1120 0.4881 0.8567
0.1572 11.0 1232 0.4779 0.8657
0.1407 12.0 1344 0.4886 0.8596
0.132 13.0 1456 0.4933 0.8618
0.1319 14.0 1568 0.4807 0.8635
0.1277 15.0 1680 0.4846 0.8618

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 2.20.0
  • Tokenizers 0.20.3
Downloads last month
52
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Hanish2007/brand-safety-model

Quantized
(26)
this model