|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
[Optimum Habana](https://github.com/huggingface/optimum-habana) is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU). |
|
It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks. |
|
Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at [hf.co/hardware/habana](https://huggingface.co/hardware/habana). |
|
|
|
## Llama model HPU configuration |
|
|
|
This model only contains the `GaudiConfig` file for running [Falcon models](https://huggingface.co/tiiuae) on Habana's Gaudi processors (HPU). |
|
|
|
**This model contains no model weights, only a GaudiConfig.** |
|
|
|
This enables to specify: |
|
- `use_fused_adam`: whether to use Habana's custom AdamW implementation |
|
- `use_fused_clip_norm`: whether to use Habana's fused gradient norm clipping operator |
|
- `use_torch_autocast`: whether to use PyTorch's autocast mixed precision |
|
|
|
## Usage |
|
|
|
The model is instantiated the same way as in the Transformers library. |
|
The only difference is that there are a few new training arguments specific to HPUs. |
|
|
|
[Here](https://github.com/huggingface/optimum-habana/blob/main/examples/language-modeling/run_clm.py) is a causal language modeling example script to pre-train/fine-tune a model. You can run it with Falcon with the following command: |
|
```bash |
|
LOWER_LIST=ops_bf16.txt python3 run_lora_clm.py \ |
|
--model_name_or_path tiiuae/falcon-40b \ |
|
--dataset_name timdettmers/openassistant-guanaco \ |
|
--bf16 True \ |
|
--output_dir ./model_lora_falcon \ |
|
--num_train_epochs 3 \ |
|
--per_device_train_batch_size 1 \ |
|
--per_device_eval_batch_size 1 \ |
|
--gradient_accumulation_steps 16 \ |
|
--evaluation_strategy "no" \ |
|
--save_strategy "no" \ |
|
--learning_rate 3e-4 \ |
|
--max_grad_norm 0.3 \ |
|
--warmup_ratio 0.03 \ |
|
--lr_scheduler_type "constant" \ |
|
--logging_steps 1 \ |
|
--do_train \ |
|
--use_habana \ |
|
--use_lazy_mode \ |
|
--pipelining_fwd_bwd \ |
|
--throughput_warmup_steps 3 \ |
|
--lora_rank=64 \ |
|
--lora_alpha=16 \ |
|
--lora_dropout=0.1 \ |
|
--lora_target_modules "query_key_value" "dense" "dense_h_to_4h" "dense_4h_to_h" \ |
|
--dataset_concatenation \ |
|
--max_seq_length 256 \ |
|
--low_cpu_mem_usage True \ |
|
--adam_epsilon 1e-08 \ |
|
--do_eval \ |
|
--validation_split_percentage 5 |
|
``` |
|
|
|
You will need to install the [PEFT](https://huggingface.co/docs/peft/index) library with `pip install peft` to run the command above. |
|
|
|
Check the [documentation](https://huggingface.co/docs/optimum/habana/index) out for more advanced usage and examples. |
|
|