|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-base-samsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: test |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 47.3683 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-base-samsum |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3716 |
|
- Rouge1: 47.3683 |
|
- Rouge2: 24.0343 |
|
- Rougel: 39.9874 |
|
- Rougelsum: 43.6453 |
|
- Gen Len: 17.3004 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.4531 | 1.0 | 1842 | 1.3836 | 46.4391 | 23.0513 | 39.1448 | 42.8774 | 17.1868 | |
|
| 1.3433 | 2.0 | 3684 | 1.3729 | 47.0465 | 23.4504 | 39.8361 | 43.3316 | 17.2613 | |
|
| 1.2767 | 3.0 | 5526 | 1.3716 | 47.3683 | 24.0343 | 39.9874 | 43.6453 | 17.3004 | |
|
| 1.2117 | 4.0 | 7368 | 1.3739 | 47.6321 | 24.1445 | 40.3378 | 43.9123 | 17.0989 | |
|
| 1.1622 | 5.0 | 9210 | 1.3826 | 47.6786 | 23.9568 | 40.2743 | 43.7625 | 17.0879 | |
|
| 1.1387 | 6.0 | 11052 | 1.3920 | 47.6434 | 24.0265 | 40.2093 | 43.9179 | 17.3712 | |
|
| 1.1011 | 7.0 | 12894 | 1.3947 | 47.6658 | 24.0395 | 40.3477 | 43.8425 | 17.2186 | |
|
| 1.0755 | 8.0 | 14736 | 1.4059 | 47.5613 | 24.0555 | 40.181 | 43.7645 | 17.1490 | |
|
| 1.0514 | 9.0 | 16578 | 1.4053 | 47.9552 | 24.2395 | 40.3731 | 44.0694 | 17.3602 | |
|
| 1.0311 | 10.0 | 18420 | 1.4114 | 48.0582 | 24.3022 | 40.4713 | 44.1136 | 17.3175 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.3 |
|
- Tokenizers 0.13.3 |
|
|