Buseak's picture
update model card README.md
349d7e4
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: canine_vowelizer_2105_v6
    results: []

canine_vowelizer_2105_v6

This model is a fine-tuned version of google/canine-s on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1704
  • Precision: 0.9998
  • Recall: 0.9998
  • F1: 0.9998
  • Accuracy: 0.9391

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4826 1.0 3885 0.4310 0.9997 0.9998 0.9997 0.8467
0.4118 2.0 7770 0.3556 0.9997 0.9998 0.9997 0.8748
0.369 3.0 11655 0.3126 0.9997 0.9998 0.9997 0.8893
0.339 4.0 15540 0.2811 0.9997 0.9998 0.9998 0.9014
0.3192 5.0 19425 0.2589 0.9997 0.9998 0.9998 0.9095
0.3052 6.0 23310 0.2399 0.9997 0.9998 0.9998 0.9157
0.281 7.0 27195 0.2252 0.9997 0.9998 0.9998 0.9207
0.2749 8.0 31080 0.2117 0.9998 0.9998 0.9998 0.9248
0.2589 9.0 34965 0.2011 0.9998 0.9998 0.9998 0.9285
0.253 10.0 38850 0.1940 0.9998 0.9998 0.9998 0.9314
0.2428 11.0 42735 0.1842 0.9998 0.9998 0.9998 0.9348
0.2433 12.0 46620 0.1783 0.9998 0.9998 0.9998 0.9365
0.2265 13.0 50505 0.1751 0.9998 0.9998 0.9998 0.9375
0.2244 14.0 54390 0.1721 0.9998 0.9998 0.9998 0.9387
0.2203 15.0 58275 0.1704 0.9998 0.9998 0.9998 0.9391

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3