beit-base-patch16-224-65-fold1
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3454
- Accuracy: 0.8732
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.9231 | 3 | 0.7288 | 0.4648 |
No log | 1.8462 | 6 | 0.6816 | 0.5634 |
No log | 2.7692 | 9 | 0.6402 | 0.6479 |
0.699 | 4.0 | 13 | 0.6028 | 0.6620 |
0.699 | 4.9231 | 16 | 0.5877 | 0.6620 |
0.699 | 5.8462 | 19 | 0.5858 | 0.6620 |
0.618 | 6.7692 | 22 | 0.5099 | 0.7324 |
0.618 | 8.0 | 26 | 0.5926 | 0.6901 |
0.618 | 8.9231 | 29 | 0.4867 | 0.7746 |
0.5564 | 9.8462 | 32 | 0.4736 | 0.7746 |
0.5564 | 10.7692 | 35 | 0.4780 | 0.7606 |
0.5564 | 12.0 | 39 | 0.4812 | 0.7606 |
0.5017 | 12.9231 | 42 | 0.4834 | 0.7887 |
0.5017 | 13.8462 | 45 | 0.4662 | 0.8451 |
0.5017 | 14.7692 | 48 | 0.4560 | 0.8028 |
0.4603 | 16.0 | 52 | 0.4046 | 0.8169 |
0.4603 | 16.9231 | 55 | 0.3368 | 0.8451 |
0.4603 | 17.8462 | 58 | 0.3454 | 0.8732 |
0.4037 | 18.7692 | 61 | 0.6355 | 0.7324 |
0.4037 | 20.0 | 65 | 0.3624 | 0.8592 |
0.4037 | 20.9231 | 68 | 0.3748 | 0.8592 |
0.3696 | 21.8462 | 71 | 0.3799 | 0.8451 |
0.3696 | 22.7692 | 74 | 0.3886 | 0.8592 |
0.3696 | 24.0 | 78 | 0.3485 | 0.8451 |
0.3193 | 24.9231 | 81 | 0.3385 | 0.8732 |
0.3193 | 25.8462 | 84 | 0.3691 | 0.8592 |
0.3193 | 26.7692 | 87 | 0.3863 | 0.8732 |
0.308 | 28.0 | 91 | 0.3722 | 0.8732 |
0.308 | 28.9231 | 94 | 0.3481 | 0.8732 |
0.308 | 29.8462 | 97 | 0.3488 | 0.8732 |
0.2306 | 30.7692 | 100 | 0.4253 | 0.8451 |
0.2306 | 32.0 | 104 | 0.6244 | 0.7887 |
0.2306 | 32.9231 | 107 | 0.4688 | 0.7887 |
0.2431 | 33.8462 | 110 | 0.6080 | 0.7746 |
0.2431 | 34.7692 | 113 | 0.5795 | 0.7606 |
0.2431 | 36.0 | 117 | 0.5478 | 0.7887 |
0.2174 | 36.9231 | 120 | 0.5283 | 0.8169 |
0.2174 | 37.8462 | 123 | 0.5356 | 0.7887 |
0.2174 | 38.7692 | 126 | 0.5723 | 0.8169 |
0.1928 | 40.0 | 130 | 0.5489 | 0.8028 |
0.1928 | 40.9231 | 133 | 0.5277 | 0.7887 |
0.1928 | 41.8462 | 136 | 0.4725 | 0.8028 |
0.1928 | 42.7692 | 139 | 0.7954 | 0.7606 |
0.1919 | 44.0 | 143 | 0.5396 | 0.7887 |
0.1919 | 44.9231 | 146 | 0.6012 | 0.7746 |
0.1919 | 45.8462 | 149 | 0.6192 | 0.8028 |
0.1886 | 46.7692 | 152 | 0.6233 | 0.8028 |
0.1886 | 48.0 | 156 | 0.6465 | 0.8169 |
0.1886 | 48.9231 | 159 | 0.7676 | 0.8028 |
0.1661 | 49.8462 | 162 | 0.5266 | 0.8028 |
0.1661 | 50.7692 | 165 | 0.5127 | 0.8310 |
0.1661 | 52.0 | 169 | 0.5554 | 0.8169 |
0.1746 | 52.9231 | 172 | 0.6333 | 0.8310 |
0.1746 | 53.8462 | 175 | 0.6069 | 0.7887 |
0.1746 | 54.7692 | 178 | 0.6963 | 0.7887 |
0.1487 | 56.0 | 182 | 0.7242 | 0.8028 |
0.1487 | 56.9231 | 185 | 0.8501 | 0.7887 |
0.1487 | 57.8462 | 188 | 0.6207 | 0.7887 |
0.1785 | 58.7692 | 191 | 0.5805 | 0.7887 |
0.1785 | 60.0 | 195 | 0.5998 | 0.8169 |
0.1785 | 60.9231 | 198 | 0.5254 | 0.7887 |
0.1711 | 61.8462 | 201 | 0.5723 | 0.8028 |
0.1711 | 62.7692 | 204 | 0.7298 | 0.7887 |
0.1711 | 64.0 | 208 | 0.6647 | 0.7887 |
0.1637 | 64.9231 | 211 | 0.7011 | 0.8310 |
0.1637 | 65.8462 | 214 | 0.7031 | 0.8169 |
0.1637 | 66.7692 | 217 | 0.7163 | 0.8028 |
0.1618 | 68.0 | 221 | 0.6511 | 0.8169 |
0.1618 | 68.9231 | 224 | 0.6291 | 0.8310 |
0.1618 | 69.8462 | 227 | 0.6044 | 0.8451 |
0.153 | 70.7692 | 230 | 0.5888 | 0.8310 |
0.153 | 72.0 | 234 | 0.5881 | 0.8310 |
0.153 | 72.9231 | 237 | 0.5604 | 0.8169 |
0.1365 | 73.8462 | 240 | 0.6055 | 0.8310 |
0.1365 | 74.7692 | 243 | 0.6326 | 0.8028 |
0.1365 | 76.0 | 247 | 0.6686 | 0.7746 |
0.1231 | 76.9231 | 250 | 0.6955 | 0.7746 |
0.1231 | 77.8462 | 253 | 0.7302 | 0.7746 |
0.1231 | 78.7692 | 256 | 0.7928 | 0.7746 |
0.132 | 80.0 | 260 | 0.7247 | 0.7887 |
0.132 | 80.9231 | 263 | 0.7243 | 0.8028 |
0.132 | 81.8462 | 266 | 0.7361 | 0.8169 |
0.132 | 82.7692 | 269 | 0.7179 | 0.7746 |
0.1126 | 84.0 | 273 | 0.7054 | 0.7746 |
0.1126 | 84.9231 | 276 | 0.7192 | 0.7887 |
0.1126 | 85.8462 | 279 | 0.7358 | 0.7746 |
0.1141 | 86.7692 | 282 | 0.7575 | 0.7887 |
0.1141 | 88.0 | 286 | 0.7741 | 0.7887 |
0.1141 | 88.9231 | 289 | 0.7878 | 0.7887 |
0.1105 | 89.8462 | 292 | 0.7857 | 0.7887 |
0.1105 | 90.7692 | 295 | 0.7814 | 0.7887 |
0.1105 | 92.0 | 299 | 0.7785 | 0.7887 |
0.1006 | 92.3077 | 300 | 0.7782 | 0.7887 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for BilalMuftuoglu/beit-base-patch16-224-65-fold1
Base model
microsoft/beit-base-patch16-224