Baljinnyam's picture
update model card README.md
dc83d71
metadata
language:
  - mn
license: mit
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-large-mnli-ner-2000
    results: []

roberta-large-mnli-ner-2000

This model is a fine-tuned version of roberta-large-mnli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2962
  • Precision: 0.5550
  • Recall: 0.7002
  • F1: 0.6192
  • Accuracy: 0.9229

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.5957 1.0 47 0.3873 0.3785 0.5503 0.4485 0.8762
0.3783 2.0 94 0.3326 0.4809 0.6208 0.5420 0.8970
0.31 3.0 141 0.3072 0.4149 0.5996 0.4904 0.8932
0.2706 4.0 188 0.2973 0.5096 0.6510 0.5717 0.9096
0.2486 5.0 235 0.3273 0.4987 0.6454 0.5627 0.9061
0.2113 6.0 282 0.2658 0.5148 0.6611 0.5788 0.9146
0.1856 7.0 329 0.2824 0.5140 0.6767 0.5843 0.9138
0.1554 8.0 376 0.2944 0.5450 0.6980 0.6121 0.9181
0.1362 9.0 423 0.2893 0.5475 0.6969 0.6132 0.9199
0.1232 10.0 470 0.2962 0.5550 0.7002 0.6192 0.9229

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3