layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7047
  • Answer: {'precision': 0.7122222222222222, 'recall': 0.792336217552534, 'f1': 0.7501462843768285, 'number': 809}
  • Header: {'precision': 0.325, 'recall': 0.3277310924369748, 'f1': 0.3263598326359833, 'number': 119}
  • Question: {'precision': 0.7794508414526129, 'recall': 0.8262910798122066, 'f1': 0.8021877848678213, 'number': 1065}
  • Overall Precision: 0.7259
  • Overall Recall: 0.7827
  • Overall F1: 0.7533
  • Overall Accuracy: 0.8068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8367 1.0 10 1.6199 {'precision': 0.017991004497751123, 'recall': 0.014833127317676144, 'f1': 0.016260162601626018, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.21987951807228914, 'recall': 0.13708920187793427, 'f1': 0.16888374783111626, 'number': 1065} 0.1187 0.0793 0.0951 0.3426
1.4807 2.0 20 1.2596 {'precision': 0.18181818181818182, 'recall': 0.20519159456118666, 'f1': 0.1927990708478513, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.46142208774583965, 'recall': 0.5727699530516432, 'f1': 0.5111018014243821, 'number': 1065} 0.3472 0.3894 0.3671 0.5904
1.1183 3.0 30 0.9406 {'precision': 0.4608967674661105, 'recall': 0.546353522867738, 'f1': 0.5, 'number': 809} {'precision': 0.03225806451612903, 'recall': 0.008403361344537815, 'f1': 0.013333333333333332, 'number': 119} {'precision': 0.56973293768546, 'recall': 0.7211267605633803, 'f1': 0.6365520099461252, 'number': 1065} 0.5180 0.6076 0.5592 0.7099
0.8592 4.0 40 0.7881 {'precision': 0.5798237022526934, 'recall': 0.7317676143386898, 'f1': 0.6469945355191257, 'number': 809} {'precision': 0.10714285714285714, 'recall': 0.05042016806722689, 'f1': 0.06857142857142856, 'number': 119} {'precision': 0.6663865546218487, 'recall': 0.7446009389671362, 'f1': 0.7033259423503326, 'number': 1065} 0.6136 0.6979 0.6531 0.7604
0.6864 5.0 50 0.7305 {'precision': 0.6115261472785486, 'recall': 0.7082818294190358, 'f1': 0.6563573883161512, 'number': 809} {'precision': 0.23529411764705882, 'recall': 0.16806722689075632, 'f1': 0.19607843137254902, 'number': 119} {'precision': 0.6808510638297872, 'recall': 0.8112676056338028, 'f1': 0.7403598971722366, 'number': 1065} 0.6360 0.7311 0.6802 0.7749
0.584 6.0 60 0.6955 {'precision': 0.6358024691358025, 'recall': 0.7639060568603214, 'f1': 0.6939921392476137, 'number': 809} {'precision': 0.28205128205128205, 'recall': 0.18487394957983194, 'f1': 0.2233502538071066, 'number': 119} {'precision': 0.7248495270851246, 'recall': 0.7915492957746478, 'f1': 0.7567324955116697, 'number': 1065} 0.6701 0.7441 0.7052 0.7810
0.5083 7.0 70 0.6726 {'precision': 0.6795698924731183, 'recall': 0.7812113720642769, 'f1': 0.7268545140885566, 'number': 809} {'precision': 0.27, 'recall': 0.226890756302521, 'f1': 0.24657534246575347, 'number': 119} {'precision': 0.7439236111111112, 'recall': 0.8046948356807512, 'f1': 0.7731168245376635, 'number': 1065} 0.6948 0.7607 0.7262 0.7933
0.4552 8.0 80 0.6811 {'precision': 0.6750788643533123, 'recall': 0.7935723114956736, 'f1': 0.7295454545454545, 'number': 809} {'precision': 0.23214285714285715, 'recall': 0.2184873949579832, 'f1': 0.22510822510822512, 'number': 119} {'precision': 0.7482817869415808, 'recall': 0.8178403755868544, 'f1': 0.781516375056079, 'number': 1065} 0.6911 0.7722 0.7294 0.7959
0.4053 9.0 90 0.6773 {'precision': 0.7058177826564215, 'recall': 0.7948084054388134, 'f1': 0.7476744186046511, 'number': 809} {'precision': 0.27450980392156865, 'recall': 0.23529411764705882, 'f1': 0.2533936651583711, 'number': 119} {'precision': 0.7614840989399293, 'recall': 0.8093896713615023, 'f1': 0.7847064178425124, 'number': 1065} 0.7147 0.7692 0.7409 0.7999
0.3938 10.0 100 0.6783 {'precision': 0.6976998904709748, 'recall': 0.7873918417799752, 'f1': 0.7398373983739838, 'number': 809} {'precision': 0.2894736842105263, 'recall': 0.2773109243697479, 'f1': 0.2832618025751073, 'number': 119} {'precision': 0.7643979057591623, 'recall': 0.8225352112676056, 'f1': 0.7924016282225238, 'number': 1065} 0.7115 0.7757 0.7422 0.8007
0.3377 11.0 110 0.6881 {'precision': 0.7136465324384788, 'recall': 0.788627935723115, 'f1': 0.7492660011743981, 'number': 809} {'precision': 0.3103448275862069, 'recall': 0.3025210084033613, 'f1': 0.30638297872340425, 'number': 119} {'precision': 0.7664359861591695, 'recall': 0.831924882629108, 'f1': 0.7978388113462405, 'number': 1065} 0.7202 0.7827 0.7502 0.8033
0.3211 12.0 120 0.6958 {'precision': 0.7075575027382256, 'recall': 0.7985166872682324, 'f1': 0.7502903600464577, 'number': 809} {'precision': 0.31092436974789917, 'recall': 0.31092436974789917, 'f1': 0.31092436974789917, 'number': 119} {'precision': 0.7762923351158645, 'recall': 0.8178403755868544, 'f1': 0.79652491998171, 'number': 1065} 0.7214 0.7797 0.7495 0.8048
0.3036 13.0 130 0.7008 {'precision': 0.7138121546961326, 'recall': 0.7985166872682324, 'f1': 0.7537922987164527, 'number': 809} {'precision': 0.32727272727272727, 'recall': 0.3025210084033613, 'f1': 0.314410480349345, 'number': 119} {'precision': 0.7775800711743772, 'recall': 0.8206572769953052, 'f1': 0.7985381452718137, 'number': 1065} 0.7274 0.7807 0.7531 0.8049
0.2798 14.0 140 0.7025 {'precision': 0.7131696428571429, 'recall': 0.7898640296662547, 'f1': 0.7495601173020529, 'number': 809} {'precision': 0.3274336283185841, 'recall': 0.31092436974789917, 'f1': 0.3189655172413793, 'number': 119} {'precision': 0.7727272727272727, 'recall': 0.8300469483568075, 'f1': 0.8003621548211861, 'number': 1065} 0.7246 0.7827 0.7525 0.8066
0.279 15.0 150 0.7047 {'precision': 0.7122222222222222, 'recall': 0.792336217552534, 'f1': 0.7501462843768285, 'number': 809} {'precision': 0.325, 'recall': 0.3277310924369748, 'f1': 0.3263598326359833, 'number': 119} {'precision': 0.7794508414526129, 'recall': 0.8262910798122066, 'f1': 0.8021877848678213, 'number': 1065} 0.7259 0.7827 0.7533 0.8068

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
105
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Azzz786/layoutlm-funsd

Finetuned
(149)
this model