Augusto777's picture
Model save
9e788d3 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-dmae-va-U5-42D
    results: []

beit-base-patch16-224-dmae-va-U5-42D

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6193
  • Accuracy: 0.7

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 42

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9 7 0.8832 0.6167
1.2709 1.94 15 0.8194 0.7
0.9705 2.97 23 0.7715 0.6
0.7033 4.0 31 1.1243 0.6333
0.7033 4.9 38 1.2102 0.55
0.7367 5.94 46 1.0123 0.65
0.5424 6.97 54 1.1218 0.6667
0.3998 8.0 62 1.3493 0.6
0.3998 8.9 69 1.3213 0.5833
0.3478 9.94 77 1.2704 0.6167
0.3467 10.97 85 1.4684 0.6167
0.2805 12.0 93 1.1832 0.7167
0.2496 12.9 100 1.3645 0.6333
0.2496 13.94 108 1.3561 0.6667
0.1855 14.97 116 1.6048 0.6167
0.2162 16.0 124 1.3662 0.6833
0.1833 16.9 131 1.6070 0.6667
0.1833 17.94 139 1.8448 0.6
0.2022 18.97 147 1.3397 0.65
0.1587 20.0 155 1.5272 0.65
0.1991 20.9 162 1.4667 0.65
0.1639 21.94 170 1.3853 0.65
0.1639 22.97 178 1.8195 0.6667
0.1364 24.0 186 1.7032 0.6167
0.1513 24.9 193 1.6734 0.65
0.1197 25.94 201 1.8673 0.6
0.1197 26.97 209 1.9885 0.6
0.1366 28.0 217 1.7329 0.6667
0.0982 28.9 224 1.6177 0.7333
0.0983 29.94 232 1.6226 0.7167
0.1131 30.97 240 1.5967 0.7
0.1131 32.0 248 1.6310 0.7
0.0694 32.9 255 1.6673 0.7333
0.0745 33.94 263 1.6257 0.7
0.058 34.97 271 1.6017 0.7167
0.058 36.0 279 1.6812 0.7
0.055 36.9 286 1.6524 0.7
0.0569 37.94 294 1.6193 0.7

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2