Augusto777's picture
End of training
c30d14c verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-DMAE-5e-5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8043478260869565

beit-base-patch16-224-DMAE-5e-5

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6236
  • Accuracy: 0.8043

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 1.3816 0.4565
No log 2.0 7 1.3504 0.4565
1.3654 2.86 10 1.3075 0.4565
1.3654 4.0 14 1.2444 0.4565
1.3654 4.86 17 1.2089 0.4565
1.2386 6.0 21 1.1711 0.4565
1.2386 6.86 24 1.1492 0.4565
1.2386 8.0 28 1.1050 0.4783
1.132 8.86 31 1.0928 0.6522
1.132 10.0 35 1.0230 0.6739
1.132 10.86 38 0.9864 0.6522
1.015 12.0 42 1.0060 0.6739
1.015 12.86 45 0.8790 0.7174
1.015 14.0 49 0.8533 0.6739
0.9217 14.86 52 0.8203 0.6957
0.9217 16.0 56 0.8152 0.6739
0.9217 16.86 59 0.8598 0.6522
0.7989 18.0 63 0.7979 0.6957
0.7989 18.86 66 0.7555 0.6739
0.7309 20.0 70 0.7019 0.7609
0.7309 20.86 73 0.7254 0.7174
0.7309 22.0 77 0.7268 0.6739
0.6267 22.86 80 0.7096 0.6739
0.6267 24.0 84 0.7568 0.6739
0.6267 24.86 87 0.6565 0.7391
0.564 26.0 91 0.7035 0.7391
0.564 26.86 94 0.7081 0.7391
0.564 28.0 98 0.6236 0.8043
0.5625 28.86 101 0.6091 0.8043
0.5625 30.0 105 0.6523 0.7609
0.5625 30.86 108 0.6235 0.7826
0.5185 32.0 112 0.5974 0.7826
0.5185 32.86 115 0.5944 0.7826
0.5185 34.0 119 0.6005 0.7826
0.5005 34.29 120 0.6005 0.7826

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0