|
---
|
|
license: apache-2.0
|
|
base_model: microsoft/beit-base-patch16-224
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: beit-base-patch16-224-DMAE-5e-5
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: validation
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.8043478260869565
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# beit-base-patch16-224-DMAE-5e-5
|
|
|
|
This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.6236
|
|
- Accuracy: 0.8043
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 4
|
|
- total_train_batch_size: 64
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 40
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
|
| No log | 0.86 | 3 | 1.3816 | 0.4565 |
|
|
| No log | 2.0 | 7 | 1.3504 | 0.4565 |
|
|
| 1.3654 | 2.86 | 10 | 1.3075 | 0.4565 |
|
|
| 1.3654 | 4.0 | 14 | 1.2444 | 0.4565 |
|
|
| 1.3654 | 4.86 | 17 | 1.2089 | 0.4565 |
|
|
| 1.2386 | 6.0 | 21 | 1.1711 | 0.4565 |
|
|
| 1.2386 | 6.86 | 24 | 1.1492 | 0.4565 |
|
|
| 1.2386 | 8.0 | 28 | 1.1050 | 0.4783 |
|
|
| 1.132 | 8.86 | 31 | 1.0928 | 0.6522 |
|
|
| 1.132 | 10.0 | 35 | 1.0230 | 0.6739 |
|
|
| 1.132 | 10.86 | 38 | 0.9864 | 0.6522 |
|
|
| 1.015 | 12.0 | 42 | 1.0060 | 0.6739 |
|
|
| 1.015 | 12.86 | 45 | 0.8790 | 0.7174 |
|
|
| 1.015 | 14.0 | 49 | 0.8533 | 0.6739 |
|
|
| 0.9217 | 14.86 | 52 | 0.8203 | 0.6957 |
|
|
| 0.9217 | 16.0 | 56 | 0.8152 | 0.6739 |
|
|
| 0.9217 | 16.86 | 59 | 0.8598 | 0.6522 |
|
|
| 0.7989 | 18.0 | 63 | 0.7979 | 0.6957 |
|
|
| 0.7989 | 18.86 | 66 | 0.7555 | 0.6739 |
|
|
| 0.7309 | 20.0 | 70 | 0.7019 | 0.7609 |
|
|
| 0.7309 | 20.86 | 73 | 0.7254 | 0.7174 |
|
|
| 0.7309 | 22.0 | 77 | 0.7268 | 0.6739 |
|
|
| 0.6267 | 22.86 | 80 | 0.7096 | 0.6739 |
|
|
| 0.6267 | 24.0 | 84 | 0.7568 | 0.6739 |
|
|
| 0.6267 | 24.86 | 87 | 0.6565 | 0.7391 |
|
|
| 0.564 | 26.0 | 91 | 0.7035 | 0.7391 |
|
|
| 0.564 | 26.86 | 94 | 0.7081 | 0.7391 |
|
|
| 0.564 | 28.0 | 98 | 0.6236 | 0.8043 |
|
|
| 0.5625 | 28.86 | 101 | 0.6091 | 0.8043 |
|
|
| 0.5625 | 30.0 | 105 | 0.6523 | 0.7609 |
|
|
| 0.5625 | 30.86 | 108 | 0.6235 | 0.7826 |
|
|
| 0.5185 | 32.0 | 112 | 0.5974 | 0.7826 |
|
|
| 0.5185 | 32.86 | 115 | 0.5944 | 0.7826 |
|
|
| 0.5185 | 34.0 | 119 | 0.6005 | 0.7826 |
|
|
| 0.5005 | 34.29 | 120 | 0.6005 | 0.7826 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.36.2
|
|
- Pytorch 2.1.2+cu118
|
|
- Datasets 2.16.1
|
|
- Tokenizers 0.15.0
|
|
|