Augusto777's picture
End of training
27ffcb0 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: SWv2-DMAE-H-5-ps-clean-fix-U-40-Cross-2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9047619047619048

SWv2-DMAE-H-5-ps-clean-fix-U-40-Cross-2

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3493
  • Accuracy: 0.9048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6089 0.98 12 1.6061 0.2024
1.6027 1.96 24 1.5770 0.2024
1.563 2.94 36 1.5561 0.2024
1.5141 4.0 49 1.4404 0.2024
1.3727 4.98 61 1.2293 0.6310
1.2375 5.96 73 0.9512 0.7738
1.0523 6.94 85 0.7222 0.75
0.9473 8.0 98 0.5629 0.8571
0.7895 8.98 110 0.4626 0.8571
0.7525 9.96 122 0.4545 0.8095
0.669 10.94 134 0.4193 0.8452
0.6892 12.0 147 0.4371 0.8333
0.6742 12.98 159 0.4079 0.8452
0.5667 13.96 171 0.3863 0.8690
0.56 14.94 183 0.4160 0.8571
0.5683 16.0 196 0.4555 0.7976
0.5347 16.98 208 0.3839 0.8571
0.4723 17.96 220 0.3763 0.8810
0.4566 18.94 232 0.3525 0.8690
0.4328 20.0 245 0.3548 0.8690
0.4691 20.98 257 0.3934 0.8571
0.3675 21.96 269 0.3728 0.8810
0.3744 22.94 281 0.3810 0.8690
0.3883 24.0 294 0.3982 0.8571
0.3633 24.98 306 0.4277 0.8690
0.3439 25.96 318 0.3579 0.8810
0.3924 26.94 330 0.3929 0.8571
0.3139 28.0 343 0.3637 0.8929
0.2987 28.98 355 0.3493 0.9048
0.3285 29.96 367 0.3524 0.9048
0.4061 30.94 379 0.3607 0.9048
0.3307 32.0 392 0.3616 0.8810
0.2882 32.98 404 0.3529 0.8810
0.3074 33.96 416 0.3429 0.8929
0.3141 34.94 428 0.3420 0.8929
0.3206 36.0 441 0.3537 0.8929
0.2772 36.98 453 0.3475 0.8929
0.2707 37.96 465 0.3461 0.8690
0.2857 38.94 477 0.3453 0.8929
0.277 39.18 480 0.3454 0.8929

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0