Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: /workspace/axolotl/in
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/UFOs-Finetune-V1.1

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: json
    data_files: plain_qa_list.jsonl
    ds_type: json
    type: chat_template
    chat_template: chatml
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    roles:
      user:
        - human
      assistant:
        - gpt
      system:
        - system

dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/UFOs-Finetune-V1.1/out

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

max_steps: 100000

wandb_project: "UFO_LLM_Finetune"
wandb_entity:
wandb_watch: "all"
wandb_name: "UFO_LLM_Finetune-V1.1"
wandb_log_model: "false"

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

UFOs-Finetune-V1.1

This model was trained from scratch on the json dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7367

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
1.5018 0.1739 1 1.5418
1.4881 0.3478 2 1.5242
1.4127 0.6957 4 1.4386
1.3943 1.0 6 1.3957
1.3169 1.3478 8 1.3707
1.2603 1.6957 10 1.3561
1.2147 2.0 12 1.3535
1.0719 2.3478 14 1.3740
0.9741 2.6957 16 1.3890
1.024 3.0 18 1.4040
0.823 3.3478 20 1.4536
0.7372 3.6957 22 1.5242
0.7555 4.0 24 1.5201
0.622 4.3478 26 1.5416
0.5762 4.6957 28 1.5996
0.5535 5.0 30 1.6379
0.4547 5.3478 32 1.6690
0.4487 5.6957 34 1.6886
0.4435 6.0 36 1.6949
0.3969 6.3478 38 1.7070
0.3988 6.6957 40 1.7213
0.3917 7.0 42 1.7302
0.3746 7.3478 44 1.7348
0.3451 7.6957 46 1.7361
0.3513 8.0 48 1.7368
0.3572 8.3478 50 1.7367

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for AiAF/UFOs-Finetune-V1.1

Quantizations
1 model