Upload EcapaTdnnForSequenceClassification
Browse files- angular_loss.py +68 -0
- audio_processing.py +413 -0
- config.json +6 -2
- conv_asr.py +189 -0
- features.py +560 -0
- model.safetensors +1 -1
- modeling_ecapa_tdnn.py +150 -0
- module.py +105 -0
- spectrogram_augment.py +223 -0
- tdnn_attention.py +620 -0
angular_loss.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class Loss(nn.modules.loss._Loss):
|
6 |
+
"""Inherit this class to implement custom loss."""
|
7 |
+
|
8 |
+
def __init__(self, **kwargs):
|
9 |
+
super(Loss, self).__init__(**kwargs)
|
10 |
+
|
11 |
+
|
12 |
+
class AdditiveMarginSoftmaxLoss(Loss):
|
13 |
+
"""Computes Additive Margin Softmax (CosFace) Loss
|
14 |
+
|
15 |
+
Paper: CosFace: Large Margin Cosine Loss for Deep Face Recognition
|
16 |
+
|
17 |
+
args:
|
18 |
+
scale: scale value for cosine angle
|
19 |
+
margin: margin value added to cosine angle
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, scale=30.0, margin=0.2):
|
23 |
+
super().__init__()
|
24 |
+
|
25 |
+
self.eps = 1e-7
|
26 |
+
self.scale = scale
|
27 |
+
self.margin = margin
|
28 |
+
|
29 |
+
def forward(self, logits: torch.Tensor, labels: torch.Tensor):
|
30 |
+
# Extract the logits corresponding to the true class
|
31 |
+
logits_target = logits[torch.arange(logits.size(0)), labels] # Faster indexing
|
32 |
+
numerator = self.scale * (logits_target - self.margin) # Apply additive margin
|
33 |
+
# Exclude the target logits from denominator calculation
|
34 |
+
logits.scatter_(1, labels.unsqueeze(1), float('-inf')) # Mask target class
|
35 |
+
denominator = torch.exp(numerator) + torch.sum(torch.exp(self.scale * logits), dim=1)
|
36 |
+
# Compute final loss
|
37 |
+
loss = -torch.log(torch.exp(numerator) / denominator)
|
38 |
+
return loss.mean()
|
39 |
+
|
40 |
+
|
41 |
+
class AdditiveAngularMarginSoftmaxLoss(Loss):
|
42 |
+
"""Computes Additive Angular Margin Softmax (ArcFace) Loss
|
43 |
+
|
44 |
+
Paper: ArcFace: Additive Angular Margin Loss for Deep Face Recognition
|
45 |
+
|
46 |
+
Args:
|
47 |
+
scale: scale value for cosine angle
|
48 |
+
margin: margin value added to cosine angle
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __init__(self, scale=20.0, margin=1.35):
|
52 |
+
super().__init__()
|
53 |
+
|
54 |
+
self.eps = 1e-7
|
55 |
+
self.scale = scale
|
56 |
+
self.margin = margin
|
57 |
+
|
58 |
+
def forward(self, logits: torch.Tensor, labels: torch.Tensor):
|
59 |
+
numerator = self.scale * torch.cos(
|
60 |
+
torch.acos(torch.clamp(torch.diagonal(logits.transpose(0, 1)[labels]), -1.0 + self.eps, 1 - self.eps))
|
61 |
+
+ self.margin
|
62 |
+
)
|
63 |
+
excl = torch.cat(
|
64 |
+
[torch.cat((logits[i, :y], logits[i, y + 1 :])).unsqueeze(0) for i, y in enumerate(labels)], dim=0
|
65 |
+
)
|
66 |
+
denominator = torch.exp(numerator) + torch.sum(torch.exp(self.scale * excl), dim=1)
|
67 |
+
L = numerator - torch.log(denominator)
|
68 |
+
return -torch.mean(L)
|
audio_processing.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from packaging import version
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from abc import ABC, abstractmethod
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
try:
|
9 |
+
import torchaudio
|
10 |
+
import torchaudio.functional
|
11 |
+
import torchaudio.transforms
|
12 |
+
|
13 |
+
TORCHAUDIO_VERSION = version.parse(torchaudio.__version__)
|
14 |
+
TORCHAUDIO_VERSION_MIN = version.parse('0.5')
|
15 |
+
|
16 |
+
HAVE_TORCHAUDIO = True
|
17 |
+
except ModuleNotFoundError:
|
18 |
+
HAVE_TORCHAUDIO = False
|
19 |
+
|
20 |
+
from .module import NeuralModule
|
21 |
+
from .features import FilterbankFeatures, FilterbankFeaturesTA
|
22 |
+
from .spectrogram_augment import SpecCutout, SpecAugment
|
23 |
+
|
24 |
+
|
25 |
+
class AudioPreprocessor(NeuralModule, ABC):
|
26 |
+
"""
|
27 |
+
An interface for Neural Modules that performs audio pre-processing,
|
28 |
+
transforming the wav files to features.
|
29 |
+
"""
|
30 |
+
|
31 |
+
def __init__(self, win_length, hop_length):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
self.win_length = win_length
|
35 |
+
self.hop_length = hop_length
|
36 |
+
|
37 |
+
self.torch_windows = {
|
38 |
+
'hann': torch.hann_window,
|
39 |
+
'hamming': torch.hamming_window,
|
40 |
+
'blackman': torch.blackman_window,
|
41 |
+
'bartlett': torch.bartlett_window,
|
42 |
+
'ones': torch.ones,
|
43 |
+
None: torch.ones,
|
44 |
+
}
|
45 |
+
|
46 |
+
# Normally, when you call to(dtype) on a torch.nn.Module, all
|
47 |
+
# floating point parameters and buffers will change to that
|
48 |
+
# dtype, rather than being float32. The AudioPreprocessor
|
49 |
+
# classes, uniquely, don't actually have any parameters or
|
50 |
+
# buffers from what I see. In addition, we want the input to
|
51 |
+
# the preprocessor to be float32, but need to create the
|
52 |
+
# output in appropriate precision. We have this empty tensor
|
53 |
+
# here just to detect which dtype tensor this module should
|
54 |
+
# output at the end of execution.
|
55 |
+
self.register_buffer("dtype_sentinel_tensor", torch.tensor((), dtype=torch.float32), persistent=False)
|
56 |
+
|
57 |
+
@torch.no_grad()
|
58 |
+
def forward(self, input_signal, length):
|
59 |
+
processed_signal, processed_length = self.get_features(input_signal.to(torch.float32), length)
|
60 |
+
processed_signal = processed_signal.to(self.dtype_sentinel_tensor.dtype)
|
61 |
+
return processed_signal, processed_length
|
62 |
+
|
63 |
+
@abstractmethod
|
64 |
+
def get_features(self, input_signal, length):
|
65 |
+
# Called by forward(). Subclasses should implement this.
|
66 |
+
pass
|
67 |
+
|
68 |
+
|
69 |
+
class AudioToMelSpectrogramPreprocessor(AudioPreprocessor):
|
70 |
+
"""Featurizer module that converts wavs to mel spectrograms.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
sample_rate (int): Sample rate of the input audio data.
|
74 |
+
Defaults to 16000
|
75 |
+
window_size (float): Size of window for fft in seconds
|
76 |
+
Defaults to 0.02
|
77 |
+
window_stride (float): Stride of window for fft in seconds
|
78 |
+
Defaults to 0.01
|
79 |
+
n_window_size (int): Size of window for fft in samples
|
80 |
+
Defaults to None. Use one of window_size or n_window_size.
|
81 |
+
n_window_stride (int): Stride of window for fft in samples
|
82 |
+
Defaults to None. Use one of window_stride or n_window_stride.
|
83 |
+
window (str): Windowing function for fft. can be one of ['hann',
|
84 |
+
'hamming', 'blackman', 'bartlett']
|
85 |
+
Defaults to "hann"
|
86 |
+
normalize (str): Can be one of ['per_feature', 'all_features']; all
|
87 |
+
other options disable feature normalization. 'all_features'
|
88 |
+
normalizes the entire spectrogram to be mean 0 with std 1.
|
89 |
+
'pre_features' normalizes per channel / freq instead.
|
90 |
+
Defaults to "per_feature"
|
91 |
+
n_fft (int): Length of FT window. If None, it uses the smallest power
|
92 |
+
of 2 that is larger than n_window_size.
|
93 |
+
Defaults to None
|
94 |
+
preemph (float): Amount of pre emphasis to add to audio. Can be
|
95 |
+
disabled by passing None.
|
96 |
+
Defaults to 0.97
|
97 |
+
features (int): Number of mel spectrogram freq bins to output.
|
98 |
+
Defaults to 64
|
99 |
+
lowfreq (int): Lower bound on mel basis in Hz.
|
100 |
+
Defaults to 0
|
101 |
+
highfreq (int): Lower bound on mel basis in Hz.
|
102 |
+
Defaults to None
|
103 |
+
log (bool): Log features.
|
104 |
+
Defaults to True
|
105 |
+
log_zero_guard_type(str): Need to avoid taking the log of zero. There
|
106 |
+
are two options: "add" or "clamp".
|
107 |
+
Defaults to "add".
|
108 |
+
log_zero_guard_value(float, or str): Add or clamp requires the number
|
109 |
+
to add with or clamp to. log_zero_guard_value can either be a float
|
110 |
+
or "tiny" or "eps". torch.finfo is used if "tiny" or "eps" is
|
111 |
+
passed.
|
112 |
+
Defaults to 2**-24.
|
113 |
+
dither (float): Amount of white-noise dithering.
|
114 |
+
Defaults to 1e-5
|
115 |
+
pad_to (int): Ensures that the output size of the time dimension is
|
116 |
+
a multiple of pad_to.
|
117 |
+
Defaults to 16
|
118 |
+
frame_splicing (int): Defaults to 1
|
119 |
+
exact_pad (bool): If True, sets stft center to False and adds padding, such that num_frames = audio_length
|
120 |
+
// hop_length. Defaults to False.
|
121 |
+
pad_value (float): The value that shorter mels are padded with.
|
122 |
+
Defaults to 0
|
123 |
+
mag_power (float): The power that the linear spectrogram is raised to
|
124 |
+
prior to multiplication with mel basis.
|
125 |
+
Defaults to 2 for a power spec
|
126 |
+
rng : Random number generator
|
127 |
+
nb_augmentation_prob (float) : Probability with which narrowband augmentation would be applied to
|
128 |
+
samples in the batch.
|
129 |
+
Defaults to 0.0
|
130 |
+
nb_max_freq (int) : Frequency above which all frequencies will be masked for narrowband augmentation.
|
131 |
+
Defaults to 4000
|
132 |
+
use_torchaudio: Whether to use the `torchaudio` implementation.
|
133 |
+
mel_norm: Normalization used for mel filterbank weights.
|
134 |
+
Defaults to 'slaney' (area normalization)
|
135 |
+
stft_exact_pad: Deprecated argument, kept for compatibility with older checkpoints.
|
136 |
+
stft_conv: Deprecated argument, kept for compatibility with older checkpoints.
|
137 |
+
"""
|
138 |
+
|
139 |
+
def __init__(
|
140 |
+
self,
|
141 |
+
sample_rate=16000,
|
142 |
+
window_size=0.02,
|
143 |
+
window_stride=0.01,
|
144 |
+
n_window_size=None,
|
145 |
+
n_window_stride=None,
|
146 |
+
window="hann",
|
147 |
+
normalize="per_feature",
|
148 |
+
n_fft=None,
|
149 |
+
preemph=0.97,
|
150 |
+
features=64,
|
151 |
+
lowfreq=0,
|
152 |
+
highfreq=None,
|
153 |
+
log=True,
|
154 |
+
log_zero_guard_type="add",
|
155 |
+
log_zero_guard_value=2**-24,
|
156 |
+
dither=1e-5,
|
157 |
+
pad_to=16,
|
158 |
+
frame_splicing=1,
|
159 |
+
exact_pad=False,
|
160 |
+
pad_value=0,
|
161 |
+
mag_power=2.0,
|
162 |
+
rng=None,
|
163 |
+
nb_augmentation_prob=0.0,
|
164 |
+
nb_max_freq=4000,
|
165 |
+
use_torchaudio: bool = False,
|
166 |
+
mel_norm="slaney",
|
167 |
+
stft_exact_pad=False, # Deprecated arguments; kept for config compatibility
|
168 |
+
stft_conv=False, # Deprecated arguments; kept for config compatibility
|
169 |
+
):
|
170 |
+
super().__init__(n_window_size, n_window_stride)
|
171 |
+
|
172 |
+
self._sample_rate = sample_rate
|
173 |
+
if window_size and n_window_size:
|
174 |
+
raise ValueError(f"{self} received both window_size and " f"n_window_size. Only one should be specified.")
|
175 |
+
if window_stride and n_window_stride:
|
176 |
+
raise ValueError(
|
177 |
+
f"{self} received both window_stride and " f"n_window_stride. Only one should be specified."
|
178 |
+
)
|
179 |
+
if window_size:
|
180 |
+
n_window_size = int(window_size * self._sample_rate)
|
181 |
+
if window_stride:
|
182 |
+
n_window_stride = int(window_stride * self._sample_rate)
|
183 |
+
|
184 |
+
# Given the long and similar argument list, point to the class and instantiate it by reference
|
185 |
+
if not use_torchaudio:
|
186 |
+
featurizer_class = FilterbankFeatures
|
187 |
+
else:
|
188 |
+
featurizer_class = FilterbankFeaturesTA
|
189 |
+
self.featurizer = featurizer_class(
|
190 |
+
sample_rate=self._sample_rate,
|
191 |
+
n_window_size=n_window_size,
|
192 |
+
n_window_stride=n_window_stride,
|
193 |
+
window=window,
|
194 |
+
normalize=normalize,
|
195 |
+
n_fft=n_fft,
|
196 |
+
preemph=preemph,
|
197 |
+
nfilt=features,
|
198 |
+
lowfreq=lowfreq,
|
199 |
+
highfreq=highfreq,
|
200 |
+
log=log,
|
201 |
+
log_zero_guard_type=log_zero_guard_type,
|
202 |
+
log_zero_guard_value=log_zero_guard_value,
|
203 |
+
dither=dither,
|
204 |
+
pad_to=pad_to,
|
205 |
+
frame_splicing=frame_splicing,
|
206 |
+
exact_pad=exact_pad,
|
207 |
+
pad_value=pad_value,
|
208 |
+
mag_power=mag_power,
|
209 |
+
rng=rng,
|
210 |
+
nb_augmentation_prob=nb_augmentation_prob,
|
211 |
+
nb_max_freq=nb_max_freq,
|
212 |
+
mel_norm=mel_norm,
|
213 |
+
stft_exact_pad=stft_exact_pad, # Deprecated arguments; kept for config compatibility
|
214 |
+
stft_conv=stft_conv, # Deprecated arguments; kept for config compatibility
|
215 |
+
)
|
216 |
+
|
217 |
+
def get_features(self, input_signal, length):
|
218 |
+
return self.featurizer(input_signal, length)
|
219 |
+
|
220 |
+
@property
|
221 |
+
def filter_banks(self):
|
222 |
+
return self.featurizer.filter_banks
|
223 |
+
|
224 |
+
|
225 |
+
class AudioToMFCCPreprocessor(AudioPreprocessor):
|
226 |
+
"""Preprocessor that converts wavs to MFCCs.
|
227 |
+
Uses torchaudio.transforms.MFCC.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
sample_rate: The sample rate of the audio.
|
231 |
+
Defaults to 16000.
|
232 |
+
window_size: Size of window for fft in seconds. Used to calculate the
|
233 |
+
win_length arg for mel spectrogram.
|
234 |
+
Defaults to 0.02
|
235 |
+
window_stride: Stride of window for fft in seconds. Used to caculate
|
236 |
+
the hop_length arg for mel spect.
|
237 |
+
Defaults to 0.01
|
238 |
+
n_window_size: Size of window for fft in samples
|
239 |
+
Defaults to None. Use one of window_size or n_window_size.
|
240 |
+
n_window_stride: Stride of window for fft in samples
|
241 |
+
Defaults to None. Use one of window_stride or n_window_stride.
|
242 |
+
window: Windowing function for fft. can be one of ['hann',
|
243 |
+
'hamming', 'blackman', 'bartlett', 'none', 'null'].
|
244 |
+
Defaults to 'hann'
|
245 |
+
n_fft: Length of FT window. If None, it uses the smallest power of 2
|
246 |
+
that is larger than n_window_size.
|
247 |
+
Defaults to None
|
248 |
+
lowfreq (int): Lower bound on mel basis in Hz.
|
249 |
+
Defaults to 0
|
250 |
+
highfreq (int): Lower bound on mel basis in Hz.
|
251 |
+
Defaults to None
|
252 |
+
n_mels: Number of mel filterbanks.
|
253 |
+
Defaults to 64
|
254 |
+
n_mfcc: Number of coefficients to retain
|
255 |
+
Defaults to 64
|
256 |
+
dct_type: Type of discrete cosine transform to use
|
257 |
+
norm: Type of norm to use
|
258 |
+
log: Whether to use log-mel spectrograms instead of db-scaled.
|
259 |
+
Defaults to True.
|
260 |
+
"""
|
261 |
+
|
262 |
+
def __init__(
|
263 |
+
self,
|
264 |
+
sample_rate=16000,
|
265 |
+
window_size=0.02,
|
266 |
+
window_stride=0.01,
|
267 |
+
n_window_size=None,
|
268 |
+
n_window_stride=None,
|
269 |
+
window='hann',
|
270 |
+
n_fft=None,
|
271 |
+
lowfreq=0.0,
|
272 |
+
highfreq=None,
|
273 |
+
n_mels=64,
|
274 |
+
n_mfcc=64,
|
275 |
+
dct_type=2,
|
276 |
+
norm='ortho',
|
277 |
+
log=True,
|
278 |
+
):
|
279 |
+
self._sample_rate = sample_rate
|
280 |
+
if not HAVE_TORCHAUDIO:
|
281 |
+
print('Could not import torchaudio. Some features might not work.')
|
282 |
+
|
283 |
+
raise ModuleNotFoundError(
|
284 |
+
"torchaudio is not installed but is necessary for "
|
285 |
+
"AudioToMFCCPreprocessor. We recommend you try "
|
286 |
+
"building it from source for the PyTorch version you have."
|
287 |
+
)
|
288 |
+
if window_size and n_window_size:
|
289 |
+
raise ValueError(f"{self} received both window_size and " f"n_window_size. Only one should be specified.")
|
290 |
+
if window_stride and n_window_stride:
|
291 |
+
raise ValueError(
|
292 |
+
f"{self} received both window_stride and " f"n_window_stride. Only one should be specified."
|
293 |
+
)
|
294 |
+
# Get win_length (n_window_size) and hop_length (n_window_stride)
|
295 |
+
if window_size:
|
296 |
+
n_window_size = int(window_size * self._sample_rate)
|
297 |
+
if window_stride:
|
298 |
+
n_window_stride = int(window_stride * self._sample_rate)
|
299 |
+
|
300 |
+
super().__init__(n_window_size, n_window_stride)
|
301 |
+
|
302 |
+
mel_kwargs = {}
|
303 |
+
|
304 |
+
mel_kwargs['f_min'] = lowfreq
|
305 |
+
mel_kwargs['f_max'] = highfreq
|
306 |
+
mel_kwargs['n_mels'] = n_mels
|
307 |
+
|
308 |
+
mel_kwargs['n_fft'] = n_fft or 2 ** math.ceil(math.log2(n_window_size))
|
309 |
+
|
310 |
+
mel_kwargs['win_length'] = n_window_size
|
311 |
+
mel_kwargs['hop_length'] = n_window_stride
|
312 |
+
|
313 |
+
# Set window_fn. None defaults to torch.ones.
|
314 |
+
window_fn = self.torch_windows.get(window, None)
|
315 |
+
if window_fn is None:
|
316 |
+
raise ValueError(
|
317 |
+
f"Window argument for AudioProcessor is invalid: {window}."
|
318 |
+
f"For no window function, use 'ones' or None."
|
319 |
+
)
|
320 |
+
mel_kwargs['window_fn'] = window_fn
|
321 |
+
|
322 |
+
# Use torchaudio's implementation of MFCCs as featurizer
|
323 |
+
self.featurizer = torchaudio.transforms.MFCC(
|
324 |
+
sample_rate=self._sample_rate,
|
325 |
+
n_mfcc=n_mfcc,
|
326 |
+
dct_type=dct_type,
|
327 |
+
norm=norm,
|
328 |
+
log_mels=log,
|
329 |
+
melkwargs=mel_kwargs,
|
330 |
+
)
|
331 |
+
|
332 |
+
def get_features(self, input_signal, length):
|
333 |
+
features = self.featurizer(input_signal)
|
334 |
+
seq_len = torch.ceil(length.to(torch.float32) / self.hop_length).to(dtype=torch.long)
|
335 |
+
return features, seq_len
|
336 |
+
|
337 |
+
|
338 |
+
class SpectrogramAugmentation(NeuralModule):
|
339 |
+
"""
|
340 |
+
Performs time and freq cuts in one of two ways.
|
341 |
+
SpecAugment zeroes out vertical and horizontal sections as described in
|
342 |
+
SpecAugment (https://arxiv.org/abs/1904.08779). Arguments for use with
|
343 |
+
SpecAugment are `freq_masks`, `time_masks`, `freq_width`, and `time_width`.
|
344 |
+
SpecCutout zeroes out rectangulars as described in Cutout
|
345 |
+
(https://arxiv.org/abs/1708.04552). Arguments for use with Cutout are
|
346 |
+
`rect_masks`, `rect_freq`, and `rect_time`.
|
347 |
+
|
348 |
+
Args:
|
349 |
+
freq_masks (int): how many frequency segments should be cut.
|
350 |
+
Defaults to 0.
|
351 |
+
time_masks (int): how many time segments should be cut
|
352 |
+
Defaults to 0.
|
353 |
+
freq_width (int): maximum number of frequencies to be cut in one
|
354 |
+
segment.
|
355 |
+
Defaults to 10.
|
356 |
+
time_width (int): maximum number of time steps to be cut in one
|
357 |
+
segment
|
358 |
+
Defaults to 10.
|
359 |
+
rect_masks (int): how many rectangular masks should be cut
|
360 |
+
Defaults to 0.
|
361 |
+
rect_freq (int): maximum size of cut rectangles along the frequency
|
362 |
+
dimension
|
363 |
+
Defaults to 5.
|
364 |
+
rect_time (int): maximum size of cut rectangles along the time
|
365 |
+
dimension
|
366 |
+
Defaults to 25.
|
367 |
+
use_numba_spec_augment: use numba code for Spectrogram augmentation
|
368 |
+
use_vectorized_spec_augment: use vectorized code for Spectrogram augmentation
|
369 |
+
|
370 |
+
"""
|
371 |
+
|
372 |
+
def __init__(
|
373 |
+
self,
|
374 |
+
freq_masks=0,
|
375 |
+
time_masks=0,
|
376 |
+
freq_width=10,
|
377 |
+
time_width=10,
|
378 |
+
rect_masks=0,
|
379 |
+
rect_time=5,
|
380 |
+
rect_freq=20,
|
381 |
+
rng=None,
|
382 |
+
mask_value=0.0,
|
383 |
+
use_vectorized_spec_augment: bool = True,
|
384 |
+
):
|
385 |
+
super().__init__()
|
386 |
+
|
387 |
+
if rect_masks > 0:
|
388 |
+
self.spec_cutout = SpecCutout(
|
389 |
+
rect_masks=rect_masks,
|
390 |
+
rect_time=rect_time,
|
391 |
+
rect_freq=rect_freq,
|
392 |
+
rng=rng,
|
393 |
+
)
|
394 |
+
# self.spec_cutout.to(self._device)
|
395 |
+
else:
|
396 |
+
self.spec_cutout = lambda input_spec: input_spec
|
397 |
+
if freq_masks + time_masks > 0:
|
398 |
+
self.spec_augment = SpecAugment(
|
399 |
+
freq_masks=freq_masks,
|
400 |
+
time_masks=time_masks,
|
401 |
+
freq_width=freq_width,
|
402 |
+
time_width=time_width,
|
403 |
+
rng=rng,
|
404 |
+
mask_value=mask_value,
|
405 |
+
use_vectorized_code=use_vectorized_spec_augment,
|
406 |
+
)
|
407 |
+
else:
|
408 |
+
self.spec_augment = lambda input_spec, length: input_spec
|
409 |
+
|
410 |
+
def forward(self, input_spec, length):
|
411 |
+
augmented_spec = self.spec_cutout(input_spec=input_spec)
|
412 |
+
augmented_spec = self.spec_augment(input_spec=augmented_spec, length=length)
|
413 |
+
return augmented_spec
|
config.json
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
{
|
2 |
-
"_attn_implementation_autoset": true,
|
3 |
"angular": true,
|
4 |
"angular_margin": 0.2,
|
5 |
"angular_scale": 30,
|
|
|
|
|
|
|
6 |
"attention_channels": 128,
|
7 |
"auto_map": {
|
8 |
-
"AutoConfig": "configuration_ecapa_tdnn.EcapaTdnnConfig"
|
|
|
9 |
},
|
10 |
"bos_token_id": 1,
|
11 |
"decoder_config": {
|
@@ -2577,6 +2580,7 @@
|
|
2577 |
},
|
2578 |
"time_masks": 5,
|
2579 |
"time_width": 0.03,
|
|
|
2580 |
"transformers_version": "4.48.3",
|
2581 |
"use_torchaudio": true,
|
2582 |
"use_vectorized_spec_augment": true,
|
|
|
1 |
{
|
|
|
2 |
"angular": true,
|
3 |
"angular_margin": 0.2,
|
4 |
"angular_scale": 30,
|
5 |
+
"architectures": [
|
6 |
+
"EcapaTdnnForSequenceClassification"
|
7 |
+
],
|
8 |
"attention_channels": 128,
|
9 |
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_ecapa_tdnn.EcapaTdnnConfig",
|
11 |
+
"AutoModelForAudioClassification": "modeling_ecapa_tdnn.EcapaTdnnForSequenceClassification"
|
12 |
},
|
13 |
"bos_token_id": 1,
|
14 |
"decoder_config": {
|
|
|
2580 |
},
|
2581 |
"time_masks": 5,
|
2582 |
"time_width": 0.03,
|
2583 |
+
"torch_dtype": "float32",
|
2584 |
"transformers_version": "4.48.3",
|
2585 |
"use_torchaudio": true,
|
2586 |
"use_vectorized_spec_augment": true,
|
conv_asr.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from .module import NeuralModule
|
8 |
+
from .tdnn_attention import (
|
9 |
+
StatsPoolLayer,
|
10 |
+
AttentivePoolLayer,
|
11 |
+
TdnnModule,
|
12 |
+
TdnnSeModule,
|
13 |
+
TdnnSeRes2NetModule,
|
14 |
+
init_weights
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
class EcapaTdnnEncoder(NeuralModule):
|
19 |
+
"""
|
20 |
+
Modified ECAPA Encoder layer without Res2Net module for faster training and inference which achieves
|
21 |
+
better numbers on speaker diarization tasks
|
22 |
+
Reference: ECAPA-TDNN Embeddings for Speaker Diarization (https://arxiv.org/pdf/2104.01466.pdf)
|
23 |
+
|
24 |
+
input:
|
25 |
+
feat_in: input feature shape (mel spec feature shape)
|
26 |
+
filters: list of filter shapes for SE_TDNN modules
|
27 |
+
kernel_sizes: list of kernel shapes for SE_TDNN modules
|
28 |
+
dilations: list of dilations for group conv se layer
|
29 |
+
scale: scale value to group wider conv channels (deafult:8)
|
30 |
+
|
31 |
+
output:
|
32 |
+
outputs : encoded output
|
33 |
+
output_length: masked output lengths
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
feat_in: int,
|
39 |
+
filters: list,
|
40 |
+
kernel_sizes: list,
|
41 |
+
dilations: list,
|
42 |
+
scale: int = 8,
|
43 |
+
res2net: bool = False,
|
44 |
+
res2net_scale: int = 8,
|
45 |
+
init_mode: str = 'xavier_uniform',
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
self.layers = nn.ModuleList()
|
49 |
+
self.layers.append(TdnnModule(feat_in, filters[0], kernel_size=kernel_sizes[0], dilation=dilations[0]))
|
50 |
+
|
51 |
+
for i in range(len(filters) - 2):
|
52 |
+
if res2net:
|
53 |
+
self.layers.append(
|
54 |
+
TdnnSeRes2NetModule(
|
55 |
+
filters[i],
|
56 |
+
filters[i + 1],
|
57 |
+
group_scale=scale,
|
58 |
+
se_channels=128,
|
59 |
+
kernel_size=kernel_sizes[i + 1],
|
60 |
+
dilation=dilations[i + 1],
|
61 |
+
res2net_scale=res2net_scale,
|
62 |
+
)
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
self.layers.append(
|
66 |
+
TdnnSeModule(
|
67 |
+
filters[i],
|
68 |
+
filters[i + 1],
|
69 |
+
group_scale=scale,
|
70 |
+
se_channels=128,
|
71 |
+
kernel_size=kernel_sizes[i + 1],
|
72 |
+
dilation=dilations[i + 1],
|
73 |
+
)
|
74 |
+
)
|
75 |
+
self.feature_agg = TdnnModule(filters[-1], filters[-1], kernel_sizes[-1], dilations[-1])
|
76 |
+
self.apply(lambda x: init_weights(x, mode=init_mode))
|
77 |
+
|
78 |
+
def forward(self, audio_signal, length=None):
|
79 |
+
x = audio_signal
|
80 |
+
outputs = []
|
81 |
+
|
82 |
+
for layer in self.layers:
|
83 |
+
x = layer(x, length=length)
|
84 |
+
outputs.append(x)
|
85 |
+
|
86 |
+
x = torch.cat(outputs[1:], dim=1)
|
87 |
+
x = self.feature_agg(x)
|
88 |
+
return x, length
|
89 |
+
|
90 |
+
|
91 |
+
class SpeakerDecoder(NeuralModule):
|
92 |
+
"""
|
93 |
+
Speaker Decoder creates the final neural layers that maps from the outputs
|
94 |
+
of Jasper Encoder to the embedding layer followed by speaker based softmax loss.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
feat_in (int): Number of channels being input to this module
|
98 |
+
num_classes (int): Number of unique speakers in dataset
|
99 |
+
emb_sizes (list) : shapes of intermediate embedding layers (we consider speaker embbeddings
|
100 |
+
from 1st of this layers). Defaults to [1024,1024]
|
101 |
+
pool_mode (str) : Pooling strategy type. options are 'xvector','tap', 'attention'
|
102 |
+
Defaults to 'xvector (mean and variance)'
|
103 |
+
tap (temporal average pooling: just mean)
|
104 |
+
attention (attention based pooling)
|
105 |
+
init_mode (str): Describes how neural network parameters are
|
106 |
+
initialized. Options are ['xavier_uniform', 'xavier_normal',
|
107 |
+
'kaiming_uniform','kaiming_normal'].
|
108 |
+
Defaults to "xavier_uniform".
|
109 |
+
"""
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
feat_in: int,
|
114 |
+
num_classes: int,
|
115 |
+
emb_sizes: Optional[Union[int, list]] = 256,
|
116 |
+
pool_mode: str = 'xvector',
|
117 |
+
angular: bool = False,
|
118 |
+
attention_channels: int = 128,
|
119 |
+
init_mode: str = "xavier_uniform",
|
120 |
+
):
|
121 |
+
super().__init__()
|
122 |
+
self.angular = angular
|
123 |
+
self.emb_id = 2
|
124 |
+
bias = False if self.angular else True
|
125 |
+
emb_sizes = [emb_sizes] if type(emb_sizes) is int else emb_sizes
|
126 |
+
|
127 |
+
self._num_classes = num_classes
|
128 |
+
self.pool_mode = pool_mode.lower()
|
129 |
+
if self.pool_mode == 'xvector' or self.pool_mode == 'tap':
|
130 |
+
self._pooling = StatsPoolLayer(feat_in=feat_in, pool_mode=self.pool_mode)
|
131 |
+
affine_type = 'linear'
|
132 |
+
elif self.pool_mode == 'attention':
|
133 |
+
self._pooling = AttentivePoolLayer(inp_filters=feat_in, attention_channels=attention_channels)
|
134 |
+
affine_type = 'conv'
|
135 |
+
|
136 |
+
shapes = [self._pooling.feat_in]
|
137 |
+
for size in emb_sizes:
|
138 |
+
shapes.append(int(size))
|
139 |
+
|
140 |
+
emb_layers = []
|
141 |
+
for shape_in, shape_out in zip(shapes[:-1], shapes[1:]):
|
142 |
+
layer = self.affine_layer(shape_in, shape_out, learn_mean=False, affine_type=affine_type)
|
143 |
+
emb_layers.append(layer)
|
144 |
+
|
145 |
+
self.emb_layers = nn.ModuleList(emb_layers)
|
146 |
+
|
147 |
+
self.final = nn.Linear(shapes[-1], self._num_classes, bias=bias)
|
148 |
+
|
149 |
+
self.apply(lambda x: init_weights(x, mode=init_mode))
|
150 |
+
|
151 |
+
def affine_layer(
|
152 |
+
self,
|
153 |
+
inp_shape,
|
154 |
+
out_shape,
|
155 |
+
learn_mean=True,
|
156 |
+
affine_type='conv',
|
157 |
+
):
|
158 |
+
if affine_type == 'conv':
|
159 |
+
layer = nn.Sequential(
|
160 |
+
nn.BatchNorm1d(inp_shape, affine=True, track_running_stats=True),
|
161 |
+
nn.Conv1d(inp_shape, out_shape, kernel_size=1),
|
162 |
+
)
|
163 |
+
|
164 |
+
else:
|
165 |
+
layer = nn.Sequential(
|
166 |
+
nn.Linear(inp_shape, out_shape),
|
167 |
+
nn.BatchNorm1d(out_shape, affine=learn_mean, track_running_stats=True),
|
168 |
+
nn.ReLU(),
|
169 |
+
)
|
170 |
+
|
171 |
+
return layer
|
172 |
+
|
173 |
+
def forward(self, encoder_output, length=None):
|
174 |
+
pool = self._pooling(encoder_output, length)
|
175 |
+
embs = []
|
176 |
+
|
177 |
+
for layer in self.emb_layers:
|
178 |
+
pool, emb = layer(pool), layer[: self.emb_id](pool)
|
179 |
+
embs.append(emb)
|
180 |
+
|
181 |
+
pool = pool.squeeze(-1)
|
182 |
+
if self.angular:
|
183 |
+
for W in self.final.parameters():
|
184 |
+
W = F.normalize(W, p=2, dim=1)
|
185 |
+
pool = F.normalize(pool, p=2, dim=1)
|
186 |
+
|
187 |
+
out = self.final(pool)
|
188 |
+
|
189 |
+
return out, embs[-1].squeeze(-1)
|
features.py
ADDED
@@ -0,0 +1,560 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
from typing import Optional, Union, Tuple
|
4 |
+
|
5 |
+
import librosa
|
6 |
+
import torchaudio
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
try:
|
12 |
+
import torchaudio
|
13 |
+
|
14 |
+
HAVE_TORCHAUDIO = True
|
15 |
+
except ModuleNotFoundError:
|
16 |
+
HAVE_TORCHAUDIO = False
|
17 |
+
|
18 |
+
CONSTANT = 1e-5
|
19 |
+
|
20 |
+
|
21 |
+
def normalize_batch(x, seq_len, normalize_type):
|
22 |
+
x_mean = None
|
23 |
+
x_std = None
|
24 |
+
if normalize_type == "per_feature":
|
25 |
+
batch_size = x.shape[0]
|
26 |
+
max_time = x.shape[2]
|
27 |
+
|
28 |
+
# When doing stream capture to a graph, item() is not allowed
|
29 |
+
# becuase it calls cudaStreamSynchronize(). Therefore, we are
|
30 |
+
# sacrificing some error checking when running with cuda graphs.
|
31 |
+
if (
|
32 |
+
torch.cuda.is_available()
|
33 |
+
and not torch.cuda.is_current_stream_capturing()
|
34 |
+
and torch.any(seq_len == 1).item()
|
35 |
+
):
|
36 |
+
raise ValueError(
|
37 |
+
"normalize_batch with `per_feature` normalize_type received a tensor of length 1. This will result "
|
38 |
+
"in torch.std() returning nan. Make sure your audio length has enough samples for a single "
|
39 |
+
"feature (ex. at least `hop_length` for Mel Spectrograms)."
|
40 |
+
)
|
41 |
+
time_steps = torch.arange(max_time, device=x.device).unsqueeze(0).expand(batch_size, max_time)
|
42 |
+
valid_mask = time_steps < seq_len.unsqueeze(1)
|
43 |
+
x_mean_numerator = torch.where(valid_mask.unsqueeze(1), x, 0.0).sum(axis=2)
|
44 |
+
x_mean_denominator = valid_mask.sum(axis=1)
|
45 |
+
x_mean = x_mean_numerator / x_mean_denominator.unsqueeze(1)
|
46 |
+
|
47 |
+
# Subtract 1 in the denominator to correct for the bias.
|
48 |
+
x_std = torch.sqrt(
|
49 |
+
torch.sum(torch.where(valid_mask.unsqueeze(1), x - x_mean.unsqueeze(2), 0.0) ** 2, axis=2)
|
50 |
+
/ (x_mean_denominator.unsqueeze(1) - 1.0)
|
51 |
+
)
|
52 |
+
# make sure x_std is not zero
|
53 |
+
x_std += CONSTANT
|
54 |
+
return (x - x_mean.unsqueeze(2)) / x_std.unsqueeze(2), x_mean, x_std
|
55 |
+
elif normalize_type == "all_features":
|
56 |
+
x_mean = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device)
|
57 |
+
x_std = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device)
|
58 |
+
for i in range(x.shape[0]):
|
59 |
+
x_mean[i] = x[i, :, : seq_len[i].item()].mean()
|
60 |
+
x_std[i] = x[i, :, : seq_len[i].item()].std()
|
61 |
+
# make sure x_std is not zero
|
62 |
+
x_std += CONSTANT
|
63 |
+
return (x - x_mean.view(-1, 1, 1)) / x_std.view(-1, 1, 1), x_mean, x_std
|
64 |
+
elif "fixed_mean" in normalize_type and "fixed_std" in normalize_type:
|
65 |
+
x_mean = torch.tensor(normalize_type["fixed_mean"], device=x.device)
|
66 |
+
x_std = torch.tensor(normalize_type["fixed_std"], device=x.device)
|
67 |
+
return (
|
68 |
+
(x - x_mean.view(x.shape[0], x.shape[1]).unsqueeze(2)) / x_std.view(x.shape[0], x.shape[1]).unsqueeze(2),
|
69 |
+
x_mean,
|
70 |
+
x_std,
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
return x, x_mean, x_std
|
74 |
+
|
75 |
+
|
76 |
+
def clean_spectrogram_batch(spectrogram: torch.Tensor, spectrogram_len: torch.Tensor, fill_value=0.0) -> torch.Tensor:
|
77 |
+
"""
|
78 |
+
Fill spectrogram values outside the length with `fill_value`
|
79 |
+
|
80 |
+
Args:
|
81 |
+
spectrogram: Tensor with shape [B, C, L] containing batched spectrograms
|
82 |
+
spectrogram_len: Tensor with shape [B] containing the sequence length of each batch element
|
83 |
+
fill_value: value to fill with, 0.0 by default
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
cleaned spectrogram, tensor with shape equal to `spectrogram`
|
87 |
+
"""
|
88 |
+
device = spectrogram.device
|
89 |
+
batch_size, _, max_len = spectrogram.shape
|
90 |
+
mask = torch.arange(max_len, device=device)[None, :] >= spectrogram_len[:, None]
|
91 |
+
mask = mask.unsqueeze(1).expand_as(spectrogram)
|
92 |
+
return spectrogram.masked_fill(mask, fill_value)
|
93 |
+
|
94 |
+
|
95 |
+
def splice_frames(x, frame_splicing):
|
96 |
+
"""Stacks frames together across feature dim
|
97 |
+
|
98 |
+
input is batch_size, feature_dim, num_frames
|
99 |
+
output is batch_size, feature_dim*frame_splicing, num_frames
|
100 |
+
|
101 |
+
"""
|
102 |
+
seq = [x]
|
103 |
+
for n in range(1, frame_splicing):
|
104 |
+
seq.append(torch.cat([x[:, :, :n], x[:, :, n:]], dim=2))
|
105 |
+
return torch.cat(seq, dim=1)
|
106 |
+
|
107 |
+
|
108 |
+
@torch.jit.script_if_tracing
|
109 |
+
def make_seq_mask_like(
|
110 |
+
lengths: torch.Tensor, like: torch.Tensor, time_dim: int = -1, valid_ones: bool = True
|
111 |
+
) -> torch.Tensor:
|
112 |
+
"""
|
113 |
+
|
114 |
+
Args:
|
115 |
+
lengths: Tensor with shape [B] containing the sequence length of each batch element
|
116 |
+
like: The mask will contain the same number of dimensions as this Tensor, and will have the same max
|
117 |
+
length in the time dimension of this Tensor.
|
118 |
+
time_dim: Time dimension of the `shape_tensor` and the resulting mask. Zero-based.
|
119 |
+
valid_ones: If True, valid tokens will contain value `1` and padding will be `0`. Else, invert.
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
A :class:`torch.Tensor` containing 1's and 0's for valid and invalid tokens, respectively, if `valid_ones`, else
|
123 |
+
vice-versa. Mask will have the same number of dimensions as `like`. Batch and time dimensions will match
|
124 |
+
the `like`. All other dimensions will be singletons. E.g., if `like.shape == [3, 4, 5]` and
|
125 |
+
`time_dim == -1', mask will have shape `[3, 1, 5]`.
|
126 |
+
"""
|
127 |
+
# Mask with shape [B, T]
|
128 |
+
mask = torch.arange(like.shape[time_dim], device=like.device).repeat(lengths.shape[0], 1).lt(lengths.view(-1, 1))
|
129 |
+
# [B, T] -> [B, *, T] where * is any number of singleton dimensions to expand to like tensor
|
130 |
+
for _ in range(like.dim() - mask.dim()):
|
131 |
+
mask = mask.unsqueeze(1)
|
132 |
+
# If needed, transpose time dim
|
133 |
+
if time_dim != -1 and time_dim != mask.dim() - 1:
|
134 |
+
mask = mask.transpose(-1, time_dim)
|
135 |
+
# Maybe invert the padded vs. valid token values
|
136 |
+
if not valid_ones:
|
137 |
+
mask = ~mask
|
138 |
+
return mask
|
139 |
+
|
140 |
+
|
141 |
+
class FilterbankFeatures(nn.Module):
|
142 |
+
"""Featurizer that converts wavs to Mel Spectrograms.
|
143 |
+
See AudioToMelSpectrogramPreprocessor for args.
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(
|
147 |
+
self,
|
148 |
+
sample_rate=16000,
|
149 |
+
n_window_size=320,
|
150 |
+
n_window_stride=160,
|
151 |
+
window="hann",
|
152 |
+
normalize="per_feature",
|
153 |
+
n_fft=None,
|
154 |
+
preemph=0.97,
|
155 |
+
nfilt=64,
|
156 |
+
lowfreq=0,
|
157 |
+
highfreq=None,
|
158 |
+
log=True,
|
159 |
+
log_zero_guard_type="add",
|
160 |
+
log_zero_guard_value=2**-24,
|
161 |
+
dither=CONSTANT,
|
162 |
+
pad_to=16,
|
163 |
+
max_duration=16.7,
|
164 |
+
frame_splicing=1,
|
165 |
+
exact_pad=False,
|
166 |
+
pad_value=0,
|
167 |
+
mag_power=2.0,
|
168 |
+
use_grads=False,
|
169 |
+
rng=None,
|
170 |
+
nb_augmentation_prob=0.0,
|
171 |
+
nb_max_freq=4000,
|
172 |
+
mel_norm="slaney",
|
173 |
+
stft_exact_pad=False, # Deprecated arguments; kept for config compatibility
|
174 |
+
stft_conv=False, # Deprecated arguments; kept for config compatibility
|
175 |
+
):
|
176 |
+
super().__init__()
|
177 |
+
if stft_conv or stft_exact_pad:
|
178 |
+
print(
|
179 |
+
"Using torch_stft is deprecated and has been removed. The values have been forcibly set to False "
|
180 |
+
"for FilterbankFeatures and AudioToMelSpectrogramPreprocessor. Please set exact_pad to True "
|
181 |
+
"as needed."
|
182 |
+
)
|
183 |
+
if exact_pad and n_window_stride % 2 == 1:
|
184 |
+
raise NotImplementedError(
|
185 |
+
f"{self} received exact_pad == True, but hop_size was odd. If audio_length % hop_size == 0. Then the "
|
186 |
+
"returned spectrogram would not be of length audio_length // hop_size. Please use an even hop_size."
|
187 |
+
)
|
188 |
+
self.log_zero_guard_value = log_zero_guard_value
|
189 |
+
if (
|
190 |
+
n_window_size is None
|
191 |
+
or n_window_stride is None
|
192 |
+
or not isinstance(n_window_size, int)
|
193 |
+
or not isinstance(n_window_stride, int)
|
194 |
+
or n_window_size <= 0
|
195 |
+
or n_window_stride <= 0
|
196 |
+
):
|
197 |
+
raise ValueError(
|
198 |
+
f"{self} got an invalid value for either n_window_size or "
|
199 |
+
f"n_window_stride. Both must be positive ints."
|
200 |
+
)
|
201 |
+
|
202 |
+
self.win_length = n_window_size
|
203 |
+
self.hop_length = n_window_stride
|
204 |
+
self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length))
|
205 |
+
self.stft_pad_amount = (self.n_fft - self.hop_length) // 2 if exact_pad else None
|
206 |
+
self.exact_pad = exact_pad
|
207 |
+
|
208 |
+
if exact_pad:
|
209 |
+
print("STFT using exact pad")
|
210 |
+
torch_windows = {
|
211 |
+
'hann': torch.hann_window,
|
212 |
+
'hamming': torch.hamming_window,
|
213 |
+
'blackman': torch.blackman_window,
|
214 |
+
'bartlett': torch.bartlett_window,
|
215 |
+
'none': None,
|
216 |
+
}
|
217 |
+
window_fn = torch_windows.get(window, None)
|
218 |
+
window_tensor = window_fn(self.win_length, periodic=False) if window_fn else None
|
219 |
+
self.register_buffer("window", window_tensor)
|
220 |
+
|
221 |
+
self.normalize = normalize
|
222 |
+
self.log = log
|
223 |
+
self.dither = dither
|
224 |
+
self.frame_splicing = frame_splicing
|
225 |
+
self.nfilt = nfilt
|
226 |
+
self.preemph = preemph
|
227 |
+
self.pad_to = pad_to
|
228 |
+
highfreq = highfreq or sample_rate / 2
|
229 |
+
|
230 |
+
filterbanks = torch.tensor(
|
231 |
+
librosa.filters.mel(
|
232 |
+
sr=sample_rate, n_fft=self.n_fft, n_mels=nfilt, fmin=lowfreq, fmax=highfreq, norm=mel_norm
|
233 |
+
),
|
234 |
+
dtype=torch.float,
|
235 |
+
).unsqueeze(0)
|
236 |
+
self.register_buffer("fb", filterbanks)
|
237 |
+
|
238 |
+
# Calculate maximum sequence length
|
239 |
+
max_length = self.get_seq_len(torch.tensor(max_duration * sample_rate, dtype=torch.float))
|
240 |
+
max_pad = pad_to - (max_length % pad_to) if pad_to > 0 else 0
|
241 |
+
self.max_length = max_length + max_pad
|
242 |
+
self.pad_value = pad_value
|
243 |
+
self.mag_power = mag_power
|
244 |
+
|
245 |
+
# We want to avoid taking the log of zero
|
246 |
+
# There are two options: either adding or clamping to a small value
|
247 |
+
if log_zero_guard_type not in ["add", "clamp"]:
|
248 |
+
raise ValueError(
|
249 |
+
f"{self} received {log_zero_guard_type} for the "
|
250 |
+
f"log_zero_guard_type parameter. It must be either 'add' or "
|
251 |
+
f"'clamp'."
|
252 |
+
)
|
253 |
+
|
254 |
+
self.use_grads = use_grads
|
255 |
+
if not use_grads:
|
256 |
+
self.forward = torch.no_grad()(self.forward)
|
257 |
+
self._rng = random.Random() if rng is None else rng
|
258 |
+
self.nb_augmentation_prob = nb_augmentation_prob
|
259 |
+
if self.nb_augmentation_prob > 0.0:
|
260 |
+
if nb_max_freq >= sample_rate / 2:
|
261 |
+
self.nb_augmentation_prob = 0.0
|
262 |
+
else:
|
263 |
+
self._nb_max_fft_bin = int((nb_max_freq / sample_rate) * n_fft)
|
264 |
+
|
265 |
+
# log_zero_guard_value is the the small we want to use, we support
|
266 |
+
# an actual number, or "tiny", or "eps"
|
267 |
+
self.log_zero_guard_type = log_zero_guard_type
|
268 |
+
|
269 |
+
def stft(self, x):
|
270 |
+
return torch.stft(
|
271 |
+
x,
|
272 |
+
n_fft=self.n_fft,
|
273 |
+
hop_length=self.hop_length,
|
274 |
+
win_length=self.win_length,
|
275 |
+
center=False if self.exact_pad else True,
|
276 |
+
window=self.window.to(dtype=torch.float),
|
277 |
+
return_complex=True,
|
278 |
+
)
|
279 |
+
|
280 |
+
def log_zero_guard_value_fn(self, x):
|
281 |
+
if isinstance(self.log_zero_guard_value, str):
|
282 |
+
if self.log_zero_guard_value == "tiny":
|
283 |
+
return torch.finfo(x.dtype).tiny
|
284 |
+
elif self.log_zero_guard_value == "eps":
|
285 |
+
return torch.finfo(x.dtype).eps
|
286 |
+
else:
|
287 |
+
raise ValueError(
|
288 |
+
f"{self} received {self.log_zero_guard_value} for the "
|
289 |
+
f"log_zero_guard_type parameter. It must be either a "
|
290 |
+
f"number, 'tiny', or 'eps'"
|
291 |
+
)
|
292 |
+
else:
|
293 |
+
return self.log_zero_guard_value
|
294 |
+
|
295 |
+
def get_seq_len(self, seq_len):
|
296 |
+
# Assuming that center is True is stft_pad_amount = 0
|
297 |
+
pad_amount = self.stft_pad_amount * 2 if self.stft_pad_amount is not None else self.n_fft // 2 * 2
|
298 |
+
seq_len = torch.floor_divide((seq_len + pad_amount - self.n_fft), self.hop_length) + 1
|
299 |
+
return seq_len.to(dtype=torch.long)
|
300 |
+
|
301 |
+
@property
|
302 |
+
def filter_banks(self):
|
303 |
+
return self.fb
|
304 |
+
|
305 |
+
def forward(self, x, seq_len, linear_spec=False):
|
306 |
+
seq_len = self.get_seq_len(seq_len)
|
307 |
+
|
308 |
+
if self.stft_pad_amount is not None:
|
309 |
+
x = torch.nn.functional.pad(
|
310 |
+
x.unsqueeze(1), (self.stft_pad_amount, self.stft_pad_amount), "reflect"
|
311 |
+
).squeeze(1)
|
312 |
+
|
313 |
+
# dither (only in training mode for eval determinism)
|
314 |
+
if self.training and self.dither > 0:
|
315 |
+
x += self.dither * torch.randn_like(x)
|
316 |
+
|
317 |
+
# do preemphasis
|
318 |
+
if self.preemph is not None:
|
319 |
+
x = torch.cat((x[:, 0].unsqueeze(1), x[:, 1:] - self.preemph * x[:, :-1]), dim=1)
|
320 |
+
|
321 |
+
# disable autocast to get full range of stft values
|
322 |
+
with torch.amp.autocast(x.device.type, enabled=False):
|
323 |
+
x = self.stft(x)
|
324 |
+
|
325 |
+
# torch stft returns complex tensor (of shape [B,N,T]); so convert to magnitude
|
326 |
+
# guard is needed for sqrt if grads are passed through
|
327 |
+
guard = 0 if not self.use_grads else CONSTANT
|
328 |
+
x = torch.view_as_real(x)
|
329 |
+
x = torch.sqrt(x.pow(2).sum(-1) + guard)
|
330 |
+
|
331 |
+
if self.training and self.nb_augmentation_prob > 0.0:
|
332 |
+
for idx in range(x.shape[0]):
|
333 |
+
if self._rng.random() < self.nb_augmentation_prob:
|
334 |
+
x[idx, self._nb_max_fft_bin :, :] = 0.0
|
335 |
+
|
336 |
+
# get power spectrum
|
337 |
+
if self.mag_power != 1.0:
|
338 |
+
x = x.pow(self.mag_power)
|
339 |
+
|
340 |
+
# return plain spectrogram if required
|
341 |
+
if linear_spec:
|
342 |
+
return x, seq_len
|
343 |
+
|
344 |
+
# dot with filterbank energies
|
345 |
+
x = torch.matmul(self.fb.to(x.dtype), x)
|
346 |
+
# log features if required
|
347 |
+
if self.log:
|
348 |
+
if self.log_zero_guard_type == "add":
|
349 |
+
x = torch.log(x + self.log_zero_guard_value_fn(x))
|
350 |
+
elif self.log_zero_guard_type == "clamp":
|
351 |
+
x = torch.log(torch.clamp(x, min=self.log_zero_guard_value_fn(x)))
|
352 |
+
else:
|
353 |
+
raise ValueError("log_zero_guard_type was not understood")
|
354 |
+
|
355 |
+
# frame splicing if required
|
356 |
+
if self.frame_splicing > 1:
|
357 |
+
x = splice_frames(x, self.frame_splicing)
|
358 |
+
|
359 |
+
# normalize if required
|
360 |
+
if self.normalize:
|
361 |
+
x, _, _ = normalize_batch(x, seq_len, normalize_type=self.normalize)
|
362 |
+
|
363 |
+
# mask to zero any values beyond seq_len in batch, pad to multiple of `pad_to` (for efficiency)
|
364 |
+
max_len = x.size(-1)
|
365 |
+
mask = torch.arange(max_len, device=x.device)
|
366 |
+
mask = mask.repeat(x.size(0), 1) >= seq_len.unsqueeze(1)
|
367 |
+
x = x.masked_fill(mask.unsqueeze(1).type(torch.bool).to(device=x.device), self.pad_value)
|
368 |
+
del mask
|
369 |
+
pad_to = self.pad_to
|
370 |
+
if pad_to == "max":
|
371 |
+
x = nn.functional.pad(x, (0, self.max_length - x.size(-1)), value=self.pad_value)
|
372 |
+
elif pad_to > 0:
|
373 |
+
pad_amt = x.size(-1) % pad_to
|
374 |
+
if pad_amt != 0:
|
375 |
+
x = nn.functional.pad(x, (0, pad_to - pad_amt), value=self.pad_value)
|
376 |
+
return x, seq_len
|
377 |
+
|
378 |
+
|
379 |
+
class FilterbankFeaturesTA(nn.Module):
|
380 |
+
"""
|
381 |
+
Exportable, `torchaudio`-based implementation of Mel Spectrogram extraction.
|
382 |
+
|
383 |
+
See `AudioToMelSpectrogramPreprocessor` for args.
|
384 |
+
|
385 |
+
"""
|
386 |
+
|
387 |
+
def __init__(
|
388 |
+
self,
|
389 |
+
sample_rate: int = 16000,
|
390 |
+
n_window_size: int = 320,
|
391 |
+
n_window_stride: int = 160,
|
392 |
+
normalize: Optional[str] = "per_feature",
|
393 |
+
nfilt: int = 64,
|
394 |
+
n_fft: Optional[int] = None,
|
395 |
+
preemph: float = 0.97,
|
396 |
+
lowfreq: float = 0,
|
397 |
+
highfreq: Optional[float] = None,
|
398 |
+
log: bool = True,
|
399 |
+
log_zero_guard_type: str = "add",
|
400 |
+
log_zero_guard_value: Union[float, str] = 2**-24,
|
401 |
+
dither: float = 1e-5,
|
402 |
+
window: str = "hann",
|
403 |
+
pad_to: int = 0,
|
404 |
+
pad_value: float = 0.0,
|
405 |
+
mel_norm="slaney",
|
406 |
+
# Seems like no one uses these options anymore. Don't convolute the code by supporting thm.
|
407 |
+
use_grads: bool = False, # Deprecated arguments; kept for config compatibility
|
408 |
+
max_duration: float = 16.7, # Deprecated arguments; kept for config compatibility
|
409 |
+
frame_splicing: int = 1, # Deprecated arguments; kept for config compatibility
|
410 |
+
exact_pad: bool = False, # Deprecated arguments; kept for config compatibility
|
411 |
+
nb_augmentation_prob: float = 0.0, # Deprecated arguments; kept for config compatibility
|
412 |
+
nb_max_freq: int = 4000, # Deprecated arguments; kept for config compatibility
|
413 |
+
mag_power: float = 2.0, # Deprecated arguments; kept for config compatibility
|
414 |
+
rng: Optional[random.Random] = None, # Deprecated arguments; kept for config compatibility
|
415 |
+
stft_exact_pad: bool = False, # Deprecated arguments; kept for config compatibility
|
416 |
+
stft_conv: bool = False, # Deprecated arguments; kept for config compatibility
|
417 |
+
):
|
418 |
+
super().__init__()
|
419 |
+
if not HAVE_TORCHAUDIO:
|
420 |
+
raise ValueError(f"Need to install torchaudio to instantiate a {self.__class__.__name__}")
|
421 |
+
|
422 |
+
# Make sure log zero guard is supported, if given as a string
|
423 |
+
supported_log_zero_guard_strings = {"eps", "tiny"}
|
424 |
+
if isinstance(log_zero_guard_value, str) and log_zero_guard_value not in supported_log_zero_guard_strings:
|
425 |
+
raise ValueError(
|
426 |
+
f"Log zero guard value must either be a float or a member of {supported_log_zero_guard_strings}"
|
427 |
+
)
|
428 |
+
|
429 |
+
# Copied from `AudioPreprocessor` due to the ad-hoc structuring of the Mel Spec extractor class
|
430 |
+
self.torch_windows = {
|
431 |
+
'hann': torch.hann_window,
|
432 |
+
'hamming': torch.hamming_window,
|
433 |
+
'blackman': torch.blackman_window,
|
434 |
+
'bartlett': torch.bartlett_window,
|
435 |
+
'ones': torch.ones,
|
436 |
+
None: torch.ones,
|
437 |
+
}
|
438 |
+
|
439 |
+
# Ensure we can look up the window function
|
440 |
+
if window not in self.torch_windows:
|
441 |
+
raise ValueError(f"Got window value '{window}' but expected a member of {self.torch_windows.keys()}")
|
442 |
+
|
443 |
+
self.win_length = n_window_size
|
444 |
+
self.hop_length = n_window_stride
|
445 |
+
self._sample_rate = sample_rate
|
446 |
+
self._normalize_strategy = normalize
|
447 |
+
self._use_log = log
|
448 |
+
self._preemphasis_value = preemph
|
449 |
+
self.log_zero_guard_type = log_zero_guard_type
|
450 |
+
self.log_zero_guard_value: Union[str, float] = log_zero_guard_value
|
451 |
+
self.dither = dither
|
452 |
+
self.pad_to = pad_to
|
453 |
+
self.pad_value = pad_value
|
454 |
+
self.n_fft = n_fft
|
455 |
+
self._mel_spec_extractor: torchaudio.transforms.MelSpectrogram = torchaudio.transforms.MelSpectrogram(
|
456 |
+
sample_rate=self._sample_rate,
|
457 |
+
win_length=self.win_length,
|
458 |
+
hop_length=self.hop_length,
|
459 |
+
n_mels=nfilt,
|
460 |
+
window_fn=self.torch_windows[window],
|
461 |
+
mel_scale="slaney",
|
462 |
+
norm=mel_norm,
|
463 |
+
n_fft=n_fft,
|
464 |
+
f_max=highfreq,
|
465 |
+
f_min=lowfreq,
|
466 |
+
wkwargs={"periodic": False},
|
467 |
+
)
|
468 |
+
|
469 |
+
@property
|
470 |
+
def filter_banks(self):
|
471 |
+
"""Matches the analogous class"""
|
472 |
+
return self._mel_spec_extractor.mel_scale.fb
|
473 |
+
|
474 |
+
def _resolve_log_zero_guard_value(self, dtype: torch.dtype) -> float:
|
475 |
+
if isinstance(self.log_zero_guard_value, float):
|
476 |
+
return self.log_zero_guard_value
|
477 |
+
return getattr(torch.finfo(dtype), self.log_zero_guard_value)
|
478 |
+
|
479 |
+
def _apply_dithering(self, signals: torch.Tensor) -> torch.Tensor:
|
480 |
+
if self.training and self.dither > 0.0:
|
481 |
+
noise = torch.randn_like(signals) * self.dither
|
482 |
+
signals = signals + noise
|
483 |
+
return signals
|
484 |
+
|
485 |
+
def _apply_preemphasis(self, signals: torch.Tensor) -> torch.Tensor:
|
486 |
+
if self._preemphasis_value is not None:
|
487 |
+
padded = torch.nn.functional.pad(signals, (1, 0))
|
488 |
+
signals = signals - self._preemphasis_value * padded[:, :-1]
|
489 |
+
return signals
|
490 |
+
|
491 |
+
def _compute_output_lengths(self, input_lengths: torch.Tensor) -> torch.Tensor:
|
492 |
+
out_lengths = input_lengths.div(self.hop_length, rounding_mode="floor").add(1).long()
|
493 |
+
return out_lengths
|
494 |
+
|
495 |
+
def _apply_pad_to(self, features: torch.Tensor) -> torch.Tensor:
|
496 |
+
# Only apply during training; else need to capture dynamic shape for exported models
|
497 |
+
if not self.training or self.pad_to == 0 or features.shape[-1] % self.pad_to == 0:
|
498 |
+
return features
|
499 |
+
pad_length = self.pad_to - (features.shape[-1] % self.pad_to)
|
500 |
+
return torch.nn.functional.pad(features, pad=(0, pad_length), value=self.pad_value)
|
501 |
+
|
502 |
+
def _apply_log(self, features: torch.Tensor) -> torch.Tensor:
|
503 |
+
if self._use_log:
|
504 |
+
zero_guard = self._resolve_log_zero_guard_value(features.dtype)
|
505 |
+
if self.log_zero_guard_type == "add":
|
506 |
+
features = features + zero_guard
|
507 |
+
elif self.log_zero_guard_type == "clamp":
|
508 |
+
features = features.clamp(min=zero_guard)
|
509 |
+
else:
|
510 |
+
raise ValueError(f"Unsupported log zero guard type: '{self.log_zero_guard_type}'")
|
511 |
+
features = features.log()
|
512 |
+
return features
|
513 |
+
|
514 |
+
def _extract_spectrograms(self, signals: torch.Tensor) -> torch.Tensor:
|
515 |
+
# Complex FFT needs to be done in single precision
|
516 |
+
with torch.amp.autocast('cuda', enabled=False):
|
517 |
+
features = self._mel_spec_extractor(waveform=signals)
|
518 |
+
return features
|
519 |
+
|
520 |
+
def _apply_normalization(self, features: torch.Tensor, lengths: torch.Tensor, eps: float = 1e-5) -> torch.Tensor:
|
521 |
+
# For consistency, this function always does a masked fill even if not normalizing.
|
522 |
+
mask: torch.Tensor = make_seq_mask_like(lengths=lengths, like=features, time_dim=-1, valid_ones=False)
|
523 |
+
features = features.masked_fill(mask, 0.0)
|
524 |
+
# Maybe don't normalize
|
525 |
+
if self._normalize_strategy is None:
|
526 |
+
return features
|
527 |
+
# Use the log zero guard for the sqrt zero guard
|
528 |
+
guard_value = self._resolve_log_zero_guard_value(features.dtype)
|
529 |
+
if self._normalize_strategy == "per_feature" or self._normalize_strategy == "all_features":
|
530 |
+
# 'all_features' reduces over each sample; 'per_feature' reduces over each channel
|
531 |
+
reduce_dim = 2
|
532 |
+
if self._normalize_strategy == "all_features":
|
533 |
+
reduce_dim = [1, 2]
|
534 |
+
# [B, D, T] -> [B, D, 1] or [B, 1, 1]
|
535 |
+
means = features.sum(dim=reduce_dim, keepdim=True).div(lengths.view(-1, 1, 1))
|
536 |
+
stds = (
|
537 |
+
features.sub(means)
|
538 |
+
.masked_fill(mask, 0.0)
|
539 |
+
.pow(2.0)
|
540 |
+
.sum(dim=reduce_dim, keepdim=True) # [B, D, T] -> [B, D, 1] or [B, 1, 1]
|
541 |
+
.div(lengths.view(-1, 1, 1) - 1) # assume biased estimator
|
542 |
+
.clamp(min=guard_value) # avoid sqrt(0)
|
543 |
+
.sqrt()
|
544 |
+
)
|
545 |
+
features = (features - means) / (stds + eps)
|
546 |
+
else:
|
547 |
+
# Deprecating constant std/mean
|
548 |
+
raise ValueError(f"Unsupported norm type: '{self._normalize_strategy}")
|
549 |
+
features = features.masked_fill(mask, 0.0)
|
550 |
+
return features
|
551 |
+
|
552 |
+
def forward(self, input_signal: torch.Tensor, length: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
553 |
+
feature_lengths = self._compute_output_lengths(input_lengths=length)
|
554 |
+
signals = self._apply_dithering(signals=input_signal)
|
555 |
+
signals = self._apply_preemphasis(signals=signals)
|
556 |
+
features = self._extract_spectrograms(signals=signals)
|
557 |
+
features = self._apply_log(features=features)
|
558 |
+
features = self._apply_normalization(features=features, lengths=feature_lengths)
|
559 |
+
features = self._apply_pad_to(features=features)
|
560 |
+
return features, feature_lengths
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 26039912
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4da89b0b6d405974f1e332bdc9945fae76222d7ddf0f955653fba9a00cca0339
|
3 |
size 26039912
|
modeling_ecapa_tdnn.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional, Union, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from transformers import PreTrainedModel
|
8 |
+
from transformers.utils import ModelOutput
|
9 |
+
|
10 |
+
from .configuration_ecapa_tdnn import EcapaTdnnConfig
|
11 |
+
from .audio_processing import AudioToMelSpectrogramPreprocessor
|
12 |
+
from .audio_processing import SpectrogramAugmentation
|
13 |
+
from .conv_asr import EcapaTdnnEncoder, SpeakerDecoder
|
14 |
+
from .angular_loss import AdditiveMarginSoftmaxLoss, AdditiveAngularMarginSoftmaxLoss
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class EcapaTdnnBaseModelOutput(ModelOutput):
|
19 |
+
|
20 |
+
encoder_outputs: torch.FloatTensor = None
|
21 |
+
extract_features: torch.FloatTensor = None
|
22 |
+
output_lengths: torch.FloatTensor = None
|
23 |
+
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class EcapaTdnnSequenceClassifierOutput(ModelOutput):
|
27 |
+
|
28 |
+
loss: torch.FloatTensor = None
|
29 |
+
logits: torch.FloatTensor = None
|
30 |
+
embeddings: torch.FloatTensor = None
|
31 |
+
|
32 |
+
|
33 |
+
class EcapaTdnnPreTrainedModel(PreTrainedModel):
|
34 |
+
|
35 |
+
config_class = EcapaTdnnConfig
|
36 |
+
base_model_prefix = "ecapa_tdnn"
|
37 |
+
main_input_name = "input_values"
|
38 |
+
|
39 |
+
def _init_weights(self, module):
|
40 |
+
"""Initialize the weights"""
|
41 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
42 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
43 |
+
if module.bias is not None:
|
44 |
+
module.bias.data.zero_()
|
45 |
+
elif isinstance(module, nn.Conv2d):
|
46 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
47 |
+
if module.bias is not None:
|
48 |
+
module.bias.data.zero_()
|
49 |
+
elif isinstance(module, nn.LayerNorm):
|
50 |
+
module.bias.data.zero_()
|
51 |
+
module.weight.data.fill_(1.0)
|
52 |
+
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
|
53 |
+
nn.init.constant_(module.weight, 1)
|
54 |
+
nn.init.constant_(module.bias, 0)
|
55 |
+
|
56 |
+
@property
|
57 |
+
def num_weights(self):
|
58 |
+
"""
|
59 |
+
Utility property that returns the total number of parameters of NeuralModule.
|
60 |
+
"""
|
61 |
+
return self._num_weights()
|
62 |
+
|
63 |
+
@torch.jit.ignore
|
64 |
+
def _num_weights(self):
|
65 |
+
num: int = 0
|
66 |
+
for p in self.parameters():
|
67 |
+
if p.requires_grad:
|
68 |
+
num += p.numel()
|
69 |
+
return num
|
70 |
+
|
71 |
+
|
72 |
+
class EcapaTdnnModel(EcapaTdnnPreTrainedModel):
|
73 |
+
|
74 |
+
def __init__(self, config: EcapaTdnnConfig):
|
75 |
+
super().__init__(config)
|
76 |
+
self.config = config
|
77 |
+
|
78 |
+
self.preprocessor = AudioToMelSpectrogramPreprocessor(**config.mel_spectrogram_config)
|
79 |
+
self.spec_augment = SpectrogramAugmentation(**config.spectrogram_augmentation_config)
|
80 |
+
self.encoder = EcapaTdnnEncoder(**config.encoder_config)
|
81 |
+
|
82 |
+
# Initialize weights and apply final processing
|
83 |
+
self.post_init()
|
84 |
+
|
85 |
+
def forward(
|
86 |
+
self,
|
87 |
+
input_values: Optional[torch.Tensor],
|
88 |
+
attention_mask: Optional[torch.Tensor] = None,
|
89 |
+
) -> Union[Tuple, EcapaTdnnBaseModelOutput]:
|
90 |
+
if attention_mask is None:
|
91 |
+
attention_mask = torch.ones_like(input_values).to(input_values)
|
92 |
+
lengths = attention_mask.sum(dim=1).long()
|
93 |
+
extract_features, output_lengths = self.preprocessor(input_values, lengths)
|
94 |
+
if self.training:
|
95 |
+
extract_features = self.spec_augment(extract_features, output_lengths)
|
96 |
+
encoder_outputs, output_lengths = self.encoder(extract_features, output_lengths)
|
97 |
+
|
98 |
+
return EcapaTdnnBaseModelOutput(
|
99 |
+
encoder_outputs=encoder_outputs,
|
100 |
+
extract_features=extract_features,
|
101 |
+
output_lengths=output_lengths,
|
102 |
+
)
|
103 |
+
|
104 |
+
|
105 |
+
class EcapaTdnnForSequenceClassification(EcapaTdnnPreTrainedModel):
|
106 |
+
|
107 |
+
def __init__(self, config: EcapaTdnnConfig):
|
108 |
+
super().__init__(config)
|
109 |
+
|
110 |
+
self.ecapa_tdnn = EcapaTdnnModel(config)
|
111 |
+
self.classifier = SpeakerDecoder(**config.decoder_config)
|
112 |
+
|
113 |
+
if config.objective == 'additive_angular_margin':
|
114 |
+
self.loss_fct = AdditiveAngularMarginSoftmaxLoss(**config.objective_config)
|
115 |
+
elif config.objective == 'additive_margin':
|
116 |
+
self.loss_fct = AdditiveMarginSoftmaxLoss(**config.objective_config)
|
117 |
+
elif config.objective == 'cross_entropy':
|
118 |
+
self.loss_fct = nn.CrossEntropyLoss(**config.objective_config)
|
119 |
+
|
120 |
+
self.init_weights()
|
121 |
+
|
122 |
+
def freeze_base_model(self):
|
123 |
+
for param in self.ecapa_tdnn.parameters():
|
124 |
+
param.requires_grad = False
|
125 |
+
|
126 |
+
def forward(
|
127 |
+
self,
|
128 |
+
input_values: Optional[torch.Tensor],
|
129 |
+
attention_mask: Optional[torch.Tensor] = None,
|
130 |
+
labels: Optional[torch.Tensor] = None,
|
131 |
+
) -> Union[Tuple, EcapaTdnnSequenceClassifierOutput]:
|
132 |
+
ecapa_tdnn_outputs = self.ecapa_tdnn(
|
133 |
+
input_values,
|
134 |
+
attention_mask,
|
135 |
+
)
|
136 |
+
logits, output_embeddings = self.classifier(
|
137 |
+
ecapa_tdnn_outputs.encoder_outputs,
|
138 |
+
ecapa_tdnn_outputs.output_lengths
|
139 |
+
)
|
140 |
+
logits = logits.view(-1, self.config.num_labels)
|
141 |
+
|
142 |
+
loss = None
|
143 |
+
if labels is not None:
|
144 |
+
loss = self.loss_fct(logits, labels.view(-1))
|
145 |
+
|
146 |
+
return EcapaTdnnSequenceClassifierOutput(
|
147 |
+
loss=loss,
|
148 |
+
logits=logits,
|
149 |
+
embeddings=output_embeddings,
|
150 |
+
)
|
module.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class NeuralModule(nn.Module):
|
6 |
+
|
7 |
+
@property
|
8 |
+
def num_weights(self):
|
9 |
+
"""
|
10 |
+
Utility property that returns the total number of parameters of NeuralModule.
|
11 |
+
"""
|
12 |
+
return self._num_weights()
|
13 |
+
|
14 |
+
@torch.jit.ignore
|
15 |
+
def _num_weights(self):
|
16 |
+
num: int = 0
|
17 |
+
for p in self.parameters():
|
18 |
+
if p.requires_grad:
|
19 |
+
num += p.numel()
|
20 |
+
return num
|
21 |
+
|
22 |
+
def freeze(self) -> None:
|
23 |
+
r"""
|
24 |
+
Freeze all params for inference.
|
25 |
+
|
26 |
+
This method sets `requires_grad` to False for all parameters of the module.
|
27 |
+
It also stores the original `requires_grad` state of each parameter in a dictionary,
|
28 |
+
so that `unfreeze()` can restore the original state if `partial=True` is set in `unfreeze()`.
|
29 |
+
"""
|
30 |
+
grad_map = {}
|
31 |
+
|
32 |
+
for pname, param in self.named_parameters():
|
33 |
+
# Store the original grad state
|
34 |
+
grad_map[pname] = param.requires_grad
|
35 |
+
# Freeze the parameter
|
36 |
+
param.requires_grad = False
|
37 |
+
|
38 |
+
# Store the frozen grad map
|
39 |
+
if not hasattr(self, '_frozen_grad_map'):
|
40 |
+
self._frozen_grad_map = grad_map
|
41 |
+
else:
|
42 |
+
self._frozen_grad_map.update(grad_map)
|
43 |
+
|
44 |
+
self.eval()
|
45 |
+
|
46 |
+
def unfreeze(self, partial: bool = False) -> None:
|
47 |
+
"""
|
48 |
+
Unfreeze all parameters for training.
|
49 |
+
|
50 |
+
Allows for either total unfreeze or partial unfreeze (if the module was explicitly frozen previously with `freeze()`).
|
51 |
+
The `partial` argument is used to determine whether to unfreeze all parameters or only the parameters that were
|
52 |
+
previously unfrozen prior `freeze()`.
|
53 |
+
|
54 |
+
Example:
|
55 |
+
Consider a model that has an encoder and a decoder module. Assume we want the encoder to be frozen always.
|
56 |
+
|
57 |
+
```python
|
58 |
+
model.encoder.freeze() # Freezes all parameters in the encoder explicitly
|
59 |
+
```
|
60 |
+
|
61 |
+
During inference, all parameters of the model should be frozen - we do this by calling the model's freeze method.
|
62 |
+
This step records that the encoder module parameters were already frozen, and so if partial unfreeze is called,
|
63 |
+
we should keep the encoder parameters frozen.
|
64 |
+
|
65 |
+
```python
|
66 |
+
model.freeze() # Freezes all parameters in the model; encoder remains frozen
|
67 |
+
```
|
68 |
+
|
69 |
+
Now, during fine-tuning, we want to unfreeze the decoder but keep the encoder frozen. We can do this by calling
|
70 |
+
`unfreeze(partial=True)`.
|
71 |
+
|
72 |
+
```python
|
73 |
+
model.unfreeze(partial=True) # Unfreezes only the decoder; encoder remains frozen
|
74 |
+
```
|
75 |
+
|
76 |
+
Args:
|
77 |
+
partial: If True, only unfreeze parameters that were previously frozen. If the parameter was already frozen
|
78 |
+
when calling `freeze()`, it will remain frozen after calling `unfreeze(partial=True)`.
|
79 |
+
"""
|
80 |
+
if partial and not hasattr(self, '_frozen_grad_map'):
|
81 |
+
raise ValueError("Cannot unfreeze partially without first freezing the module with `freeze()`")
|
82 |
+
|
83 |
+
for pname, param in self.named_parameters():
|
84 |
+
if not partial:
|
85 |
+
# Unfreeze all parameters
|
86 |
+
param.requires_grad = True
|
87 |
+
else:
|
88 |
+
# Unfreeze only parameters that were previously frozen
|
89 |
+
|
90 |
+
# Check if the parameter was frozen
|
91 |
+
if pname in self._frozen_grad_map:
|
92 |
+
param.requires_grad = self._frozen_grad_map[pname]
|
93 |
+
else:
|
94 |
+
# Log a warning if the parameter was not found in the frozen grad map
|
95 |
+
print(
|
96 |
+
f"Parameter {pname} not found in list of previously frozen parameters. "
|
97 |
+
f"Unfreezing this parameter."
|
98 |
+
)
|
99 |
+
param.requires_grad = True
|
100 |
+
|
101 |
+
# Clean up the frozen grad map
|
102 |
+
if hasattr(self, '_frozen_grad_map'):
|
103 |
+
delattr(self, '_frozen_grad_map')
|
104 |
+
|
105 |
+
self.train()
|
spectrogram_augment.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
|
10 |
+
class SpecAugment(nn.Module):
|
11 |
+
"""
|
12 |
+
Zeroes out(cuts) random continuous horisontal or
|
13 |
+
vertical segments of the spectrogram as described in
|
14 |
+
SpecAugment (https://arxiv.org/abs/1904.08779).
|
15 |
+
|
16 |
+
params:
|
17 |
+
freq_masks - how many frequency segments should be cut
|
18 |
+
time_masks - how many time segments should be cut
|
19 |
+
freq_width - maximum number of frequencies to be cut in one segment
|
20 |
+
time_width - maximum number of time steps to be cut in one segment.
|
21 |
+
Can be a positive integer or a float value in the range [0, 1].
|
22 |
+
If positive integer value, defines maximum number of time steps
|
23 |
+
to be cut in one segment.
|
24 |
+
If a float value, defines maximum percentage of timesteps that
|
25 |
+
are cut adaptively.
|
26 |
+
use_vectorized_code - GPU-based implementation with batched masking and GPU rng,
|
27 |
+
setting it to False reverts to the legacy implementation.
|
28 |
+
Fast implementation is inspired by torchaudio:
|
29 |
+
https://github.com/pytorch/audio/blob/ea437b31ce316ea3d66fe73768c0dcb94edb79ad/src/torchaudio/functional/functional.py#L816
|
30 |
+
"""
|
31 |
+
|
32 |
+
FREQ_AXIS = 1 # Frequency axis in the spectrogram tensor
|
33 |
+
TIME_AXIS = 2 # Time axis in the spectrogram tensor
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
freq_masks: int = 0,
|
38 |
+
time_masks: int = 0,
|
39 |
+
freq_width: int = 10,
|
40 |
+
time_width: Union[int, float] = 10,
|
41 |
+
rng: random.Random = None,
|
42 |
+
mask_value: float = 0.0,
|
43 |
+
use_vectorized_code: bool = True,
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
|
47 |
+
self._rng = random.Random() if rng is None else rng
|
48 |
+
|
49 |
+
self.freq_masks = freq_masks
|
50 |
+
self.time_masks = time_masks
|
51 |
+
|
52 |
+
self.freq_width = freq_width
|
53 |
+
self.time_width = time_width
|
54 |
+
|
55 |
+
self.mask_value = mask_value
|
56 |
+
self.use_vectorized_code = use_vectorized_code
|
57 |
+
|
58 |
+
if isinstance(time_width, int):
|
59 |
+
self.adaptive_temporal_width = False
|
60 |
+
else:
|
61 |
+
if time_width > 1.0 or time_width < 0.0:
|
62 |
+
raise ValueError("If `time_width` is a float value, must be in range [0, 1]")
|
63 |
+
|
64 |
+
self.adaptive_temporal_width = True
|
65 |
+
|
66 |
+
@torch.no_grad()
|
67 |
+
def forward(self, input_spec, length):
|
68 |
+
if self.use_vectorized_code:
|
69 |
+
return self._forward_vectorized(input_spec, length)
|
70 |
+
else:
|
71 |
+
return self._forward_legacy(input_spec, length)
|
72 |
+
|
73 |
+
def _forward_legacy(self, input_spec, length):
|
74 |
+
batch_size, num_freq_bins, _ = input_spec.shape
|
75 |
+
# Move lengths to CPU before repeated indexing
|
76 |
+
lengths_cpu = length.cpu().numpy()
|
77 |
+
# Generate a numpy boolean mask. `True` elements represent where the input spec will be augmented.
|
78 |
+
fill_mask: np.array = np.full(shape=input_spec.shape, fill_value=False)
|
79 |
+
freq_start_upper_bound = num_freq_bins - self.freq_width
|
80 |
+
# Choose different mask ranges for each element of the batch
|
81 |
+
for idx in range(batch_size):
|
82 |
+
# Set freq masking
|
83 |
+
for _ in range(self.freq_masks):
|
84 |
+
start = self._rng.randint(0, freq_start_upper_bound)
|
85 |
+
width = self._rng.randint(0, self.freq_width)
|
86 |
+
fill_mask[idx, start : start + width, :] = True
|
87 |
+
|
88 |
+
# Derive time width, sometimes based percentage of input length.
|
89 |
+
if self.adaptive_temporal_width:
|
90 |
+
time_max_width = max(1, int(lengths_cpu[idx] * self.time_width))
|
91 |
+
else:
|
92 |
+
time_max_width = self.time_width
|
93 |
+
time_start_upper_bound = max(1, lengths_cpu[idx] - time_max_width)
|
94 |
+
|
95 |
+
# Set time masking
|
96 |
+
for _ in range(self.time_masks):
|
97 |
+
start = self._rng.randint(0, time_start_upper_bound)
|
98 |
+
width = self._rng.randint(0, time_max_width)
|
99 |
+
fill_mask[idx, :, start : start + width] = True
|
100 |
+
# Bring the mask to device and fill spec
|
101 |
+
fill_mask = torch.from_numpy(fill_mask).to(input_spec.device)
|
102 |
+
masked_spec = input_spec.masked_fill(mask=fill_mask, value=self.mask_value)
|
103 |
+
return masked_spec
|
104 |
+
|
105 |
+
def _forward_vectorized(self, input_spec: torch.Tensor, length: torch.Tensor) -> torch.Tensor:
|
106 |
+
# time masks
|
107 |
+
input_spec = self._apply_masks(
|
108 |
+
input_spec=input_spec,
|
109 |
+
num_masks=self.time_masks,
|
110 |
+
length=length,
|
111 |
+
width=self.time_width,
|
112 |
+
axis=self.TIME_AXIS,
|
113 |
+
mask_value=self.mask_value,
|
114 |
+
)
|
115 |
+
# freq masks
|
116 |
+
input_spec = self._apply_masks(
|
117 |
+
input_spec=input_spec,
|
118 |
+
num_masks=self.freq_masks,
|
119 |
+
length=length,
|
120 |
+
width=self.freq_width,
|
121 |
+
axis=self.FREQ_AXIS,
|
122 |
+
mask_value=self.mask_value,
|
123 |
+
)
|
124 |
+
return input_spec
|
125 |
+
|
126 |
+
def _apply_masks(
|
127 |
+
self,
|
128 |
+
input_spec: torch.Tensor,
|
129 |
+
num_masks: int,
|
130 |
+
length: torch.Tensor,
|
131 |
+
width: Union[int, float],
|
132 |
+
mask_value: float,
|
133 |
+
axis: int,
|
134 |
+
) -> torch.Tensor:
|
135 |
+
|
136 |
+
assert axis in (
|
137 |
+
self.FREQ_AXIS,
|
138 |
+
self.TIME_AXIS,
|
139 |
+
), f"Axis can be only be equal to frequency \
|
140 |
+
({self.FREQ_AXIS}) or time ({self.TIME_AXIS}). Received: {axis=}"
|
141 |
+
assert not (
|
142 |
+
isinstance(width, float) and axis == self.FREQ_AXIS
|
143 |
+
), "Float width supported \
|
144 |
+
only with time axis."
|
145 |
+
|
146 |
+
batch_size = input_spec.shape[0]
|
147 |
+
axis_length = input_spec.shape[axis]
|
148 |
+
|
149 |
+
# If width is float then it is transformed into a tensor
|
150 |
+
if axis == self.TIME_AXIS and isinstance(width, float):
|
151 |
+
width = torch.clamp(width * length, max=axis_length).unsqueeze(1)
|
152 |
+
|
153 |
+
# Generate [0-1) random numbers and then scale the tensors.
|
154 |
+
# Use float32 dtype for begin/end mask markers before they are quantized to long.
|
155 |
+
mask_width = torch.rand((batch_size, num_masks), device=input_spec.device, dtype=torch.float32) * width
|
156 |
+
mask_width = mask_width.long()
|
157 |
+
mask_start = torch.rand((batch_size, num_masks), device=input_spec.device, dtype=torch.float32)
|
158 |
+
|
159 |
+
if axis == self.TIME_AXIS:
|
160 |
+
# length can only be used for the time axis
|
161 |
+
mask_start = mask_start * (length.unsqueeze(1) - mask_width)
|
162 |
+
else:
|
163 |
+
mask_start = mask_start * (axis_length - mask_width)
|
164 |
+
|
165 |
+
mask_start = mask_start.long()
|
166 |
+
mask_end = mask_start + mask_width
|
167 |
+
|
168 |
+
# Create mask values using vectorized indexing
|
169 |
+
indices = torch.arange(axis_length, device=input_spec.device)
|
170 |
+
# Create a mask_tensor with all the indices.
|
171 |
+
# The mask_tensor shape is (batch_size, num_masks, axis_length).
|
172 |
+
mask_tensor = (indices >= mask_start.unsqueeze(-1)) & (indices < mask_end.unsqueeze(-1))
|
173 |
+
|
174 |
+
# Reduce masks to one mask
|
175 |
+
mask_tensor = mask_tensor.any(dim=1)
|
176 |
+
|
177 |
+
# Create a final mask that aligns with the full tensor
|
178 |
+
mask = torch.zeros_like(input_spec, dtype=torch.bool)
|
179 |
+
if axis == self.TIME_AXIS:
|
180 |
+
mask_ranges = mask_tensor[:, None, :]
|
181 |
+
else: # axis == self.FREQ_AXIS
|
182 |
+
mask_ranges = mask_tensor[:, :, None]
|
183 |
+
mask[:, :, :] = mask_ranges
|
184 |
+
|
185 |
+
# Apply the mask value
|
186 |
+
return input_spec.masked_fill(mask=mask, value=mask_value)
|
187 |
+
|
188 |
+
|
189 |
+
class SpecCutout(nn.Module):
|
190 |
+
"""
|
191 |
+
Zeroes out(cuts) random rectangles in the spectrogram
|
192 |
+
as described in (https://arxiv.org/abs/1708.04552).
|
193 |
+
|
194 |
+
params:
|
195 |
+
rect_masks - how many rectangular masks should be cut
|
196 |
+
rect_freq - maximum size of cut rectangles along the frequency dimension
|
197 |
+
rect_time - maximum size of cut rectangles along the time dimension
|
198 |
+
"""
|
199 |
+
|
200 |
+
def __init__(self, rect_masks=0, rect_time=5, rect_freq=20, rng=None):
|
201 |
+
super(SpecCutout, self).__init__()
|
202 |
+
|
203 |
+
self._rng = random.Random() if rng is None else rng
|
204 |
+
|
205 |
+
self.rect_masks = rect_masks
|
206 |
+
self.rect_time = rect_time
|
207 |
+
self.rect_freq = rect_freq
|
208 |
+
|
209 |
+
@torch.no_grad()
|
210 |
+
def forward(self, input_spec):
|
211 |
+
sh = input_spec.shape
|
212 |
+
|
213 |
+
for idx in range(sh[0]):
|
214 |
+
for i in range(self.rect_masks):
|
215 |
+
rect_x = self._rng.randint(0, sh[1] - self.rect_freq)
|
216 |
+
rect_y = self._rng.randint(0, sh[2] - self.rect_time)
|
217 |
+
|
218 |
+
w_x = self._rng.randint(0, self.rect_freq)
|
219 |
+
w_y = self._rng.randint(0, self.rect_time)
|
220 |
+
|
221 |
+
input_spec[idx, rect_x : rect_x + w_x, rect_y : rect_y + w_y] = 0.0
|
222 |
+
|
223 |
+
return input_spec
|
tdnn_attention.py
ADDED
@@ -0,0 +1,620 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List, Optional
|
3 |
+
|
4 |
+
from numpy import inf
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.nn.init import _calculate_correct_fan
|
10 |
+
|
11 |
+
|
12 |
+
class StatsPoolLayer(nn.Module):
|
13 |
+
"""Statistics and time average pooling (TAP) layer
|
14 |
+
|
15 |
+
This computes mean and, optionally, standard deviation statistics across the time dimension.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
feat_in: Input features with shape [B, D, T]
|
19 |
+
pool_mode: Type of pool mode. Supported modes are 'xvector' (mean and standard deviation) and 'tap' (time
|
20 |
+
average pooling, i.e., mean)
|
21 |
+
eps: Epsilon, minimum value before taking the square root, when using 'xvector' mode.
|
22 |
+
unbiased: Whether to use the biased estimator for the standard deviation when using 'xvector' mode. The default
|
23 |
+
for torch.Tensor.std() is True.
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
Pooled statistics with shape [B, D].
|
27 |
+
|
28 |
+
Raises:
|
29 |
+
ValueError if an unsupported pooling mode is specified.
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(self, feat_in: int, pool_mode: str = 'xvector', eps: float = 1e-10, unbiased: bool = True):
|
33 |
+
super().__init__()
|
34 |
+
supported_modes = {"xvector", "tap"}
|
35 |
+
if pool_mode not in supported_modes:
|
36 |
+
raise ValueError(f"Pool mode must be one of {supported_modes}; got '{pool_mode}'")
|
37 |
+
self.pool_mode = pool_mode
|
38 |
+
self.feat_in = feat_in
|
39 |
+
self.eps = eps
|
40 |
+
self.unbiased = unbiased
|
41 |
+
if self.pool_mode == 'xvector':
|
42 |
+
# Mean + std
|
43 |
+
self.feat_in *= 2
|
44 |
+
|
45 |
+
def forward(self, encoder_output, length=None):
|
46 |
+
if length is None:
|
47 |
+
mean = encoder_output.mean(dim=-1) # Time Axis
|
48 |
+
if self.pool_mode == 'xvector':
|
49 |
+
correction = 1 if self.unbiased else 0
|
50 |
+
std = encoder_output.std(dim=-1, correction=correction).clamp(min=self.eps)
|
51 |
+
pooled = torch.cat([mean, std], dim=-1)
|
52 |
+
else:
|
53 |
+
pooled = mean
|
54 |
+
else:
|
55 |
+
mask = make_seq_mask_like(like=encoder_output, lengths=length, valid_ones=False)
|
56 |
+
encoder_output = encoder_output.masked_fill(mask, 0.0)
|
57 |
+
# [B, D, T] -> [B, D]
|
58 |
+
means = encoder_output.mean(dim=-1)
|
59 |
+
# Re-scale to get padded means
|
60 |
+
means = means * (encoder_output.shape[-1] / length).unsqueeze(-1)
|
61 |
+
if self.pool_mode == "xvector":
|
62 |
+
correction = 1 if self.unbiased else 0
|
63 |
+
stds = (
|
64 |
+
encoder_output.sub(means.unsqueeze(-1))
|
65 |
+
.masked_fill(mask, 0.0)
|
66 |
+
.pow(2.0)
|
67 |
+
.sum(-1) # [B, D, T] -> [B, D]
|
68 |
+
.div(length.view(-1, 1).sub(correction))
|
69 |
+
.clamp(min=self.eps)
|
70 |
+
.sqrt()
|
71 |
+
)
|
72 |
+
pooled = torch.cat((means, stds), dim=-1)
|
73 |
+
else:
|
74 |
+
pooled = means
|
75 |
+
return pooled
|
76 |
+
|
77 |
+
|
78 |
+
class AttentivePoolLayer(nn.Module):
|
79 |
+
"""
|
80 |
+
Attention pooling layer for pooling speaker embeddings
|
81 |
+
Reference: ECAPA-TDNN Embeddings for Speaker Diarization (https://arxiv.org/pdf/2104.01466.pdf)
|
82 |
+
inputs:
|
83 |
+
inp_filters: input feature channel length from encoder
|
84 |
+
attention_channels: intermediate attention channel size
|
85 |
+
kernel_size: kernel_size for TDNN and attention conv1d layers (default: 1)
|
86 |
+
dilation: dilation size for TDNN and attention conv1d layers (default: 1)
|
87 |
+
"""
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
inp_filters: int,
|
92 |
+
attention_channels: int = 128,
|
93 |
+
kernel_size: int = 1,
|
94 |
+
dilation: int = 1,
|
95 |
+
eps: float = 1e-10,
|
96 |
+
):
|
97 |
+
super().__init__()
|
98 |
+
|
99 |
+
self.feat_in = 2 * inp_filters
|
100 |
+
|
101 |
+
self.attention_layer = nn.Sequential(
|
102 |
+
TdnnModule(inp_filters * 3, attention_channels, kernel_size=kernel_size, dilation=dilation),
|
103 |
+
nn.Tanh(),
|
104 |
+
nn.Conv1d(
|
105 |
+
in_channels=attention_channels,
|
106 |
+
out_channels=inp_filters,
|
107 |
+
kernel_size=kernel_size,
|
108 |
+
dilation=dilation,
|
109 |
+
),
|
110 |
+
)
|
111 |
+
self.eps = eps
|
112 |
+
|
113 |
+
def forward(self, x, length=None):
|
114 |
+
max_len = x.size(2)
|
115 |
+
|
116 |
+
if length is None:
|
117 |
+
length = torch.ones(x.shape[0], device=x.device)
|
118 |
+
|
119 |
+
mask, num_values = lens_to_mask(length, max_len=max_len, device=x.device)
|
120 |
+
|
121 |
+
# encoder statistics
|
122 |
+
mean, std = get_statistics_with_mask(x, mask / num_values)
|
123 |
+
mean = mean.unsqueeze(2).repeat(1, 1, max_len)
|
124 |
+
std = std.unsqueeze(2).repeat(1, 1, max_len)
|
125 |
+
attn = torch.cat([x, mean, std], dim=1)
|
126 |
+
|
127 |
+
# attention statistics
|
128 |
+
attn = self.attention_layer(attn) # attention pass
|
129 |
+
attn = attn.masked_fill(mask == 0, -inf)
|
130 |
+
alpha = F.softmax(attn, dim=2) # attention values, α
|
131 |
+
mu, sg = get_statistics_with_mask(x, alpha) # µ and ∑
|
132 |
+
|
133 |
+
# gather
|
134 |
+
return torch.cat((mu, sg), dim=1).unsqueeze(2)
|
135 |
+
|
136 |
+
|
137 |
+
class TdnnModule(nn.Module):
|
138 |
+
"""
|
139 |
+
Time Delayed Neural Module (TDNN) - 1D
|
140 |
+
input:
|
141 |
+
inp_filters: input filter channels for conv layer
|
142 |
+
out_filters: output filter channels for conv layer
|
143 |
+
kernel_size: kernel weight size for conv layer
|
144 |
+
dilation: dilation for conv layer
|
145 |
+
stride: stride for conv layer
|
146 |
+
padding: padding for conv layer (default None: chooses padding value such that input and output feature shape matches)
|
147 |
+
output:
|
148 |
+
tdnn layer output
|
149 |
+
"""
|
150 |
+
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
inp_filters: int,
|
154 |
+
out_filters: int,
|
155 |
+
kernel_size: int = 1,
|
156 |
+
dilation: int = 1,
|
157 |
+
stride: int = 1,
|
158 |
+
groups: int = 1,
|
159 |
+
padding: int = None,
|
160 |
+
):
|
161 |
+
super().__init__()
|
162 |
+
if padding is None:
|
163 |
+
padding = get_same_padding(kernel_size, stride=stride, dilation=dilation)
|
164 |
+
|
165 |
+
self.conv_layer = nn.Conv1d(
|
166 |
+
in_channels=inp_filters,
|
167 |
+
out_channels=out_filters,
|
168 |
+
kernel_size=kernel_size,
|
169 |
+
dilation=dilation,
|
170 |
+
groups=groups,
|
171 |
+
padding=padding,
|
172 |
+
)
|
173 |
+
|
174 |
+
self.activation = nn.ReLU()
|
175 |
+
self.bn = nn.BatchNorm1d(out_filters)
|
176 |
+
|
177 |
+
def forward(self, x, length=None):
|
178 |
+
x = self.conv_layer(x)
|
179 |
+
x = self.activation(x)
|
180 |
+
return self.bn(x)
|
181 |
+
|
182 |
+
|
183 |
+
class MaskedSEModule(nn.Module):
|
184 |
+
"""
|
185 |
+
Squeeze and Excite module implementation with conv1d layers
|
186 |
+
input:
|
187 |
+
inp_filters: input filter channel size
|
188 |
+
se_filters: intermediate squeeze and excite channel output and input size
|
189 |
+
out_filters: output filter channel size
|
190 |
+
kernel_size: kernel_size for both conv1d layers
|
191 |
+
dilation: dilation size for both conv1d layers
|
192 |
+
|
193 |
+
output:
|
194 |
+
squeeze and excite layer output
|
195 |
+
"""
|
196 |
+
|
197 |
+
def __init__(self, inp_filters: int, se_filters: int, out_filters: int, kernel_size: int = 1, dilation: int = 1):
|
198 |
+
super().__init__()
|
199 |
+
self.se_layer = nn.Sequential(
|
200 |
+
nn.Conv1d(
|
201 |
+
inp_filters,
|
202 |
+
se_filters,
|
203 |
+
kernel_size=kernel_size,
|
204 |
+
dilation=dilation,
|
205 |
+
),
|
206 |
+
nn.ReLU(),
|
207 |
+
nn.BatchNorm1d(se_filters),
|
208 |
+
nn.Conv1d(
|
209 |
+
se_filters,
|
210 |
+
out_filters,
|
211 |
+
kernel_size=kernel_size,
|
212 |
+
dilation=dilation,
|
213 |
+
),
|
214 |
+
nn.Sigmoid(),
|
215 |
+
)
|
216 |
+
|
217 |
+
def forward(self, input, length=None):
|
218 |
+
if length is None:
|
219 |
+
x = torch.mean(input, dim=2, keep_dim=True)
|
220 |
+
else:
|
221 |
+
max_len = input.size(2)
|
222 |
+
mask, num_values = lens_to_mask(length, max_len=max_len, device=input.device)
|
223 |
+
x = torch.sum((input * mask), dim=2, keepdim=True) / (num_values)
|
224 |
+
|
225 |
+
out = self.se_layer(x)
|
226 |
+
return out * input
|
227 |
+
|
228 |
+
|
229 |
+
class TdnnSeModule(nn.Module):
|
230 |
+
"""
|
231 |
+
Modified building SE_TDNN group module block from ECAPA implementation for faster training and inference
|
232 |
+
Reference: ECAPA-TDNN Embeddings for Speaker Diarization (https://arxiv.org/pdf/2104.01466.pdf)
|
233 |
+
inputs:
|
234 |
+
inp_filters: input filter channel size
|
235 |
+
out_filters: output filter channel size
|
236 |
+
group_scale: scale value to group wider conv channels (deafult:8)
|
237 |
+
se_channels: squeeze and excite output channel size (deafult: 1024/8= 128)
|
238 |
+
kernel_size: kernel_size for group conv1d layers (default: 1)
|
239 |
+
dilation: dilation size for group conv1d layers (default: 1)
|
240 |
+
"""
|
241 |
+
|
242 |
+
def __init__(
|
243 |
+
self,
|
244 |
+
inp_filters: int,
|
245 |
+
out_filters: int,
|
246 |
+
group_scale: int = 8,
|
247 |
+
se_channels: int = 128,
|
248 |
+
kernel_size: int = 1,
|
249 |
+
dilation: int = 1,
|
250 |
+
init_mode: str = 'xavier_uniform',
|
251 |
+
):
|
252 |
+
super().__init__()
|
253 |
+
self.out_filters = out_filters
|
254 |
+
padding_val = get_same_padding(kernel_size=kernel_size, dilation=dilation, stride=1)
|
255 |
+
|
256 |
+
group_conv = nn.Conv1d(
|
257 |
+
out_filters,
|
258 |
+
out_filters,
|
259 |
+
kernel_size=kernel_size,
|
260 |
+
dilation=dilation,
|
261 |
+
padding=padding_val,
|
262 |
+
groups=group_scale,
|
263 |
+
)
|
264 |
+
self.group_tdnn_block = nn.Sequential(
|
265 |
+
TdnnModule(inp_filters, out_filters, kernel_size=1, dilation=1),
|
266 |
+
group_conv,
|
267 |
+
nn.ReLU(),
|
268 |
+
nn.BatchNorm1d(out_filters),
|
269 |
+
TdnnModule(out_filters, out_filters, kernel_size=1, dilation=1),
|
270 |
+
)
|
271 |
+
|
272 |
+
self.se_layer = MaskedSEModule(out_filters, se_channels, out_filters)
|
273 |
+
|
274 |
+
self.apply(lambda x: init_weights(x, mode=init_mode))
|
275 |
+
|
276 |
+
def forward(self, input, length=None):
|
277 |
+
x = self.group_tdnn_block(input)
|
278 |
+
x = self.se_layer(x, length)
|
279 |
+
return x + input
|
280 |
+
|
281 |
+
|
282 |
+
class Res2NetBlock(nn.Module):
|
283 |
+
"""
|
284 |
+
Res2Net module that splits input channels into groups and processes them separately before merging.
|
285 |
+
This allows multi-scale feature extraction.
|
286 |
+
"""
|
287 |
+
def __init__(self, in_channels, out_channels, scale=4, kernel_size=1, dilation=1):
|
288 |
+
super().__init__()
|
289 |
+
assert in_channels % scale == 0, "in_channels must be divisible by scale"
|
290 |
+
|
291 |
+
self.scale = scale
|
292 |
+
self.width = in_channels // scale # Number of channels per group
|
293 |
+
|
294 |
+
self.convs = nn.ModuleList([
|
295 |
+
nn.Conv1d(self.width, self.width, kernel_size=kernel_size, dilation=dilation, padding=dilation, bias=False)
|
296 |
+
for _ in range(scale - 1)
|
297 |
+
])
|
298 |
+
self.bn = nn.BatchNorm1d(out_channels)
|
299 |
+
self.activation = nn.ReLU()
|
300 |
+
|
301 |
+
def forward(self, x):
|
302 |
+
"""
|
303 |
+
x: [B, C, T]
|
304 |
+
"""
|
305 |
+
splits = torch.split(x, self.width, dim=1)
|
306 |
+
outputs = [splits[0]] # First part remains unchanged
|
307 |
+
|
308 |
+
for i in range(1, self.scale):
|
309 |
+
conv_out = self.convs[i - 1](splits[i]) # Apply convolution on each group
|
310 |
+
outputs.append(conv_out + outputs[i - 1]) # Hierarchical aggregation
|
311 |
+
|
312 |
+
out = torch.cat(outputs, dim=1) # Merge groups
|
313 |
+
return self.activation(self.bn(out))
|
314 |
+
|
315 |
+
|
316 |
+
class TdnnSeRes2NetModule(nn.Module):
|
317 |
+
"""
|
318 |
+
SE-TDNN module with Res2Net for ECAPA-TDNN.
|
319 |
+
"""
|
320 |
+
def __init__(
|
321 |
+
self,
|
322 |
+
inp_filters: int,
|
323 |
+
out_filters: int,
|
324 |
+
group_scale: int = 1,
|
325 |
+
se_channels: int = 128,
|
326 |
+
kernel_size: int = 1,
|
327 |
+
dilation: int = 1,
|
328 |
+
res2net_scale: int = 8, # New Res2Net parameter
|
329 |
+
):
|
330 |
+
super().__init__()
|
331 |
+
|
332 |
+
# First TDNN layer
|
333 |
+
self.tdnn1 = TdnnModule(inp_filters, out_filters, kernel_size=1, dilation=1, groups=group_scale)
|
334 |
+
|
335 |
+
# Res2Net block replaces grouped TDNN
|
336 |
+
self.res2net = Res2NetBlock(out_filters, out_filters, scale=res2net_scale, kernel_size=kernel_size, dilation=dilation)
|
337 |
+
|
338 |
+
# Squeeze-and-Excite module
|
339 |
+
self.se_layer = MaskedSEModule(out_filters, se_channels, out_filters)
|
340 |
+
|
341 |
+
def forward(self, x, length=None):
|
342 |
+
residual = x
|
343 |
+
x = self.tdnn1(x)
|
344 |
+
x = self.res2net(x) # Apply Res2Net block
|
345 |
+
x = self.se_layer(x, length)
|
346 |
+
return x + residual # Residual connection
|
347 |
+
|
348 |
+
|
349 |
+
class MaskedConv1d(nn.Module):
|
350 |
+
|
351 |
+
__constants__ = ["use_conv_mask", "real_out_channels", "heads"]
|
352 |
+
|
353 |
+
def __init__(
|
354 |
+
self,
|
355 |
+
in_channels,
|
356 |
+
out_channels,
|
357 |
+
kernel_size,
|
358 |
+
stride=1,
|
359 |
+
padding=0,
|
360 |
+
dilation=1,
|
361 |
+
groups=1,
|
362 |
+
heads=-1,
|
363 |
+
bias=False,
|
364 |
+
use_mask=True,
|
365 |
+
quantize=False,
|
366 |
+
):
|
367 |
+
super(MaskedConv1d, self).__init__()
|
368 |
+
|
369 |
+
if not (heads == -1 or groups == in_channels):
|
370 |
+
raise ValueError("Only use heads for depthwise convolutions")
|
371 |
+
|
372 |
+
self.real_out_channels = out_channels
|
373 |
+
if heads != -1:
|
374 |
+
in_channels = heads
|
375 |
+
out_channels = heads
|
376 |
+
groups = heads
|
377 |
+
|
378 |
+
# preserve original padding
|
379 |
+
self._padding = padding
|
380 |
+
|
381 |
+
# if padding is a tuple/list, it is considered as asymmetric padding
|
382 |
+
if type(padding) in (tuple, list):
|
383 |
+
self.pad_layer = nn.ConstantPad1d(padding, value=0.0)
|
384 |
+
# reset padding for conv since pad_layer will handle this
|
385 |
+
padding = 0
|
386 |
+
else:
|
387 |
+
self.pad_layer = None
|
388 |
+
|
389 |
+
self.conv = nn.Conv1d(
|
390 |
+
in_channels,
|
391 |
+
out_channels,
|
392 |
+
kernel_size,
|
393 |
+
stride=stride,
|
394 |
+
padding=padding,
|
395 |
+
dilation=dilation,
|
396 |
+
groups=groups,
|
397 |
+
bias=bias,
|
398 |
+
)
|
399 |
+
self.use_mask = use_mask
|
400 |
+
self.heads = heads
|
401 |
+
|
402 |
+
# Calculations for "same" padding cache
|
403 |
+
self.same_padding = (self.conv.stride[0] == 1) and (
|
404 |
+
2 * self.conv.padding[0] == self.conv.dilation[0] * (self.conv.kernel_size[0] - 1)
|
405 |
+
)
|
406 |
+
if self.pad_layer is None:
|
407 |
+
self.same_padding_asymmetric = False
|
408 |
+
else:
|
409 |
+
self.same_padding_asymmetric = (self.conv.stride[0] == 1) and (
|
410 |
+
sum(self._padding) == self.conv.dilation[0] * (self.conv.kernel_size[0] - 1)
|
411 |
+
)
|
412 |
+
|
413 |
+
# `self.lens` caches consecutive integers from 0 to `self.max_len` that are used to compute the mask for a
|
414 |
+
# batch. Recomputed to bigger size as needed. Stored on a device of the latest batch lens.
|
415 |
+
if self.use_mask:
|
416 |
+
self.max_len = torch.tensor(0)
|
417 |
+
self.lens = torch.tensor(0)
|
418 |
+
|
419 |
+
def get_seq_len(self, lens):
|
420 |
+
if self.same_padding or self.same_padding_asymmetric:
|
421 |
+
return lens
|
422 |
+
|
423 |
+
if self.pad_layer is None:
|
424 |
+
return (
|
425 |
+
torch.div(
|
426 |
+
lens + 2 * self.conv.padding[0] - self.conv.dilation[0] * (self.conv.kernel_size[0] - 1) - 1,
|
427 |
+
self.conv.stride[0],
|
428 |
+
rounding_mode='trunc',
|
429 |
+
)
|
430 |
+
+ 1
|
431 |
+
)
|
432 |
+
else:
|
433 |
+
return (
|
434 |
+
torch.div(
|
435 |
+
lens + sum(self._padding) - self.conv.dilation[0] * (self.conv.kernel_size[0] - 1) - 1,
|
436 |
+
self.conv.stride[0],
|
437 |
+
rounding_mode='trunc',
|
438 |
+
)
|
439 |
+
+ 1
|
440 |
+
)
|
441 |
+
|
442 |
+
def forward(self, x, lens):
|
443 |
+
if self.use_mask:
|
444 |
+
# Generally will be called by ConvASREncoder, but kept as single gpu backup.
|
445 |
+
if x.size(2) > self.max_len:
|
446 |
+
self.update_masked_length(x.size(2), device=lens.device)
|
447 |
+
x = self.mask_input(x, lens)
|
448 |
+
|
449 |
+
# Update lengths
|
450 |
+
lens = self.get_seq_len(lens)
|
451 |
+
|
452 |
+
# asymmtric pad if necessary
|
453 |
+
if self.pad_layer is not None:
|
454 |
+
x = self.pad_layer(x)
|
455 |
+
|
456 |
+
sh = x.shape
|
457 |
+
if self.heads != -1:
|
458 |
+
x = x.view(-1, self.heads, sh[-1])
|
459 |
+
|
460 |
+
out = self.conv(x)
|
461 |
+
|
462 |
+
if self.heads != -1:
|
463 |
+
out = out.view(sh[0], self.real_out_channels, -1)
|
464 |
+
|
465 |
+
return out, lens
|
466 |
+
|
467 |
+
def update_masked_length(self, max_len, seq_range=None, device=None):
|
468 |
+
if seq_range is None:
|
469 |
+
self.lens, self.max_len = _masked_conv_init_lens(self.lens, max_len, self.max_len)
|
470 |
+
self.lens = self.lens.to(device)
|
471 |
+
else:
|
472 |
+
self.lens = seq_range
|
473 |
+
self.max_len = torch.tensor(max_len)
|
474 |
+
|
475 |
+
def mask_input(self, x, lens):
|
476 |
+
max_len = x.size(2)
|
477 |
+
mask = self.lens[:max_len].unsqueeze(0).to(lens.device) < lens.unsqueeze(1)
|
478 |
+
x = x * mask.unsqueeze(1).to(device=x.device)
|
479 |
+
return x
|
480 |
+
|
481 |
+
|
482 |
+
@torch.jit.script
|
483 |
+
def _masked_conv_init_lens(lens: torch.Tensor, current_maxlen: int, original_maxlen: torch.Tensor):
|
484 |
+
if current_maxlen > original_maxlen:
|
485 |
+
new_lens = torch.arange(current_maxlen)
|
486 |
+
new_max_lens = torch.tensor(current_maxlen)
|
487 |
+
else:
|
488 |
+
new_lens = lens
|
489 |
+
new_max_lens = original_maxlen
|
490 |
+
return new_lens, new_max_lens
|
491 |
+
|
492 |
+
|
493 |
+
def get_same_padding(kernel_size, stride, dilation) -> int:
|
494 |
+
if stride > 1 and dilation > 1:
|
495 |
+
raise ValueError("Only stride OR dilation may be greater than 1")
|
496 |
+
return (dilation * (kernel_size - 1)) // 2
|
497 |
+
|
498 |
+
|
499 |
+
def lens_to_mask(lens: List[int], max_len: int, device: str = None):
|
500 |
+
"""
|
501 |
+
outputs masking labels for list of lengths of audio features, with max length of any
|
502 |
+
mask as max_len
|
503 |
+
input:
|
504 |
+
lens: list of lens
|
505 |
+
max_len: max length of any audio feature
|
506 |
+
output:
|
507 |
+
mask: masked labels
|
508 |
+
num_values: sum of mask values for each feature (useful for computing statistics later)
|
509 |
+
"""
|
510 |
+
lens_mat = torch.arange(max_len).to(device)
|
511 |
+
mask = lens_mat[:max_len].unsqueeze(0) < lens.unsqueeze(1)
|
512 |
+
mask = mask.unsqueeze(1)
|
513 |
+
num_values = torch.sum(mask, dim=2, keepdim=True)
|
514 |
+
return mask, num_values
|
515 |
+
|
516 |
+
|
517 |
+
def get_statistics_with_mask(x: torch.Tensor, m: torch.Tensor, dim: int = 2, eps: float = 1e-10):
|
518 |
+
"""
|
519 |
+
compute mean and standard deviation of input(x) provided with its masking labels (m)
|
520 |
+
input:
|
521 |
+
x: feature input
|
522 |
+
m: averaged mask labels
|
523 |
+
output:
|
524 |
+
mean: mean of input features
|
525 |
+
std: stadard deviation of input features
|
526 |
+
"""
|
527 |
+
mean = torch.sum((m * x), dim=dim)
|
528 |
+
std = torch.sqrt((m * (x - mean.unsqueeze(dim)).pow(2)).sum(dim).clamp(eps))
|
529 |
+
return mean, std
|
530 |
+
|
531 |
+
|
532 |
+
@torch.jit.script_if_tracing
|
533 |
+
def make_seq_mask_like(
|
534 |
+
like: torch.Tensor, lengths: torch.Tensor, valid_ones: bool = True, time_dim: int = -1
|
535 |
+
) -> torch.Tensor:
|
536 |
+
mask = torch.arange(like.shape[time_dim], device=like.device).repeat(lengths.shape[0], 1).lt(lengths.unsqueeze(-1))
|
537 |
+
# Match number of dims in `like` tensor
|
538 |
+
for _ in range(like.dim() - mask.dim()):
|
539 |
+
mask = mask.unsqueeze(1)
|
540 |
+
# If time dim != -1, transpose to proper dim.
|
541 |
+
if time_dim != -1:
|
542 |
+
mask = mask.transpose(time_dim, -1)
|
543 |
+
if not valid_ones:
|
544 |
+
mask = ~mask
|
545 |
+
return mask
|
546 |
+
|
547 |
+
|
548 |
+
def init_weights(m, mode: Optional[str] = 'xavier_uniform'):
|
549 |
+
if isinstance(m, MaskedConv1d):
|
550 |
+
init_weights(m.conv, mode)
|
551 |
+
if isinstance(m, (nn.Conv1d, nn.Linear)):
|
552 |
+
if mode is not None:
|
553 |
+
if mode == 'xavier_uniform':
|
554 |
+
nn.init.xavier_uniform_(m.weight, gain=1.0)
|
555 |
+
elif mode == 'xavier_normal':
|
556 |
+
nn.init.xavier_normal_(m.weight, gain=1.0)
|
557 |
+
elif mode == 'kaiming_uniform':
|
558 |
+
nn.init.kaiming_uniform_(m.weight, nonlinearity="relu")
|
559 |
+
elif mode == 'kaiming_normal':
|
560 |
+
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
|
561 |
+
elif mode == 'tds_uniform':
|
562 |
+
tds_uniform_(m.weight)
|
563 |
+
elif mode == 'tds_normal':
|
564 |
+
tds_normal_(m.weight)
|
565 |
+
else:
|
566 |
+
raise ValueError("Unknown Initialization mode: {0}".format(mode))
|
567 |
+
elif isinstance(m, nn.BatchNorm1d):
|
568 |
+
if m.track_running_stats:
|
569 |
+
m.running_mean.zero_()
|
570 |
+
m.running_var.fill_(1)
|
571 |
+
m.num_batches_tracked.zero_()
|
572 |
+
if m.affine:
|
573 |
+
nn.init.ones_(m.weight)
|
574 |
+
nn.init.zeros_(m.bias)
|
575 |
+
|
576 |
+
|
577 |
+
def tds_uniform_(tensor, mode='fan_in'):
|
578 |
+
"""
|
579 |
+
Uniform Initialization from the paper [Sequence-to-Sequence Speech Recognition with Time-Depth Separable Convolutions](https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2460.pdf)
|
580 |
+
Normalized to -
|
581 |
+
|
582 |
+
.. math::
|
583 |
+
\\text{bound} = \\text{2} \\times \\sqrt{\\frac{1}{\\text{fan\\_mode}}}
|
584 |
+
|
585 |
+
Args:
|
586 |
+
tensor: an n-dimensional `torch.Tensor`
|
587 |
+
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
|
588 |
+
preserves the magnitude of the variance of the weights in the
|
589 |
+
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
|
590 |
+
backwards pass.
|
591 |
+
"""
|
592 |
+
fan = _calculate_correct_fan(tensor, mode)
|
593 |
+
gain = 2.0 # sqrt(4.0) = 2
|
594 |
+
std = gain / math.sqrt(fan) # sqrt(4.0 / fan_in)
|
595 |
+
bound = std # Calculate uniform bounds from standard deviation
|
596 |
+
with torch.no_grad():
|
597 |
+
return tensor.uniform_(-bound, bound)
|
598 |
+
|
599 |
+
|
600 |
+
def tds_normal_(tensor, mode='fan_in'):
|
601 |
+
"""
|
602 |
+
Normal Initialization from the paper [Sequence-to-Sequence Speech Recognition with Time-Depth Separable Convolutions](https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2460.pdf)
|
603 |
+
Normalized to -
|
604 |
+
|
605 |
+
.. math::
|
606 |
+
\\text{bound} = \\text{2} \\times \\sqrt{\\frac{1}{\\text{fan\\_mode}}}
|
607 |
+
|
608 |
+
Args:
|
609 |
+
tensor: an n-dimensional `torch.Tensor`
|
610 |
+
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
|
611 |
+
preserves the magnitude of the variance of the weights in the
|
612 |
+
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
|
613 |
+
backwards pass.
|
614 |
+
"""
|
615 |
+
fan = _calculate_correct_fan(tensor, mode)
|
616 |
+
gain = 2.0
|
617 |
+
std = gain / math.sqrt(fan) # sqrt(4.0 / fan_in)
|
618 |
+
bound = std # Calculate uniform bounds from standard deviation
|
619 |
+
with torch.no_grad():
|
620 |
+
return tensor.normal_(0.0, bound)
|