nielsr HF staff commited on
Commit
bc4e141
·
verified ·
1 Parent(s): 3412d13

Add model card

Browse files

This PR adds a model card for the paper [Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach](https://huggingface.co/papers/2502.05171).

It also adds a link to the project page, and the Github repository.

Files changed (1) hide show
  1. README.md +4 -269
README.md CHANGED
@@ -1,275 +1,10 @@
1
  ---
2
  library_name: transformers
3
- tags:
4
- - code
5
- - math
6
- - reasoning
7
- - llm
8
- license: apache-2.0
9
- language:
10
- - en
11
  pipeline_tag: text-generation
12
- # datasets: # cannot order these nicely
13
- # - HuggingFaceTB/smollm-corpus
14
- # - jon-tow/starcoderdata-python-edu
15
- # - ubaada/booksum-complete-cleaned
16
- # - euirim/goodwiki
17
- # - togethercomputer/RedPajama-Data-1T
18
- # - allenai/dolma
19
- # - bigcode/the-stack-v2-train-smol-ids
20
- # - bigcode/starcoderdata
21
- # - m-a-p/Matrix
22
- # - cerebras/SlimPajama-627B
23
- # - open-phi/textbooks
24
- # - open-phi/textbooks_grounded
25
- # - open-phi/programming_books_llama
26
- # - nampdn-ai/tiny-strange-textbooks
27
- # - nampdn-ai/tiny-textbooks
28
- # - nampdn-ai/tiny-code-textbooks
29
- # - nampdn-ai/tiny-orca-textbooks
30
- # - SciPhi/textbooks-are-all-you-need-lite
31
- # - vikp/textbook_quality_programming
32
- # - EleutherAI/proof-pile-2
33
- # - open-web-math/open-web-math
34
- # - biglam/blbooks-parquet
35
- # - storytracer/LoC-PD-Books
36
- # - GAIR/MathPile
37
- # - tomg-group-umd/CLRS-Text-train
38
- # - math-ai/AutoMathText
39
- # - bigcode/commitpackft
40
- # - bigcode/stack-dedup-python-fns
41
- # - vikp/python_code_instructions_filtered
42
- # - mlabonne/chessllm
43
- # - Waterhorse/chess_data
44
- # - EleutherAI/lichess-puzzles
45
- # - chargoddard/WebInstructSub-prometheus
46
- # - Locutusque/hercules-v5.0
47
- # - nvidia/OpenMathInstruct-1
48
- # - meta-math/MetaMathQA
49
- # - m-a-p/CodeFeedback-Filtered-Instruction
50
- # - nvidia/Daring-Anteater
51
- # - nvidia/sft_datablend_v1
52
- # - BAAI/Infinity-Instruct
53
- # - anthracite-org/Stheno-Data-Filtered
54
- # - Nopm/Opus_WritingStruct
55
- # - xinlai/Math-Step-DPO-10K
56
- # - bigcode/self-oss-instruct-sc2-exec-filter-50k
57
- # - HuggingFaceTB/everyday-conversations
58
- # - hkust-nlp/gsm8k-fix
59
- # - HuggingFaceH4/no_robots
60
- # - THUDM/LongWriter-6k
61
- # - THUDM/webglm-qa
62
- # - AlgorithmicResearchGroup/ArXivDLInstruct
63
- # - allenai/tulu-v2-sft-mixture-olmo-4096
64
- # - bigscience/P3
65
- # - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
66
- # - Gryphe/Opus-WritingPrompts
67
- # - nothingiisreal/Reddit-Dirty-And-WritingPrompts
68
- # - nothingiisreal/Kalomaze-Opus-Instruct-25k-filtered
69
- # - internlm/Lean-Github
70
- # - pkuAI4M/LeanWorkbook
71
- # - casey-martin/multilingual-mathematical-autoformalization
72
- # - AI4M/leandojo-informalized
73
- # - casey-martin/oa_cpp_annotate_gen
74
- # - l3lab/ntp-mathlib-instruct-st
75
- # - ajibawa-2023/Maths-College
76
- # - ajibawa-2023/Maths-Grade-School
77
- # - ajibawa-2023/General-Stories-Collection
78
- # - XinyaoHu/AMPS_mathematica
79
- # - XinyaoHu/AMPS_khan
80
- # - Magpie-Align/Magpie-Pro-MT-300K-v0.1
81
- # - Magpie-Align/Magpie-Reasoning-150K
82
- # - gair-prox/FineWeb-pro
83
- # - gair-prox/c4-pro
84
- # - gair-prox/RedPajama-pro
85
- # - gair-prox/open-web-math-pro
86
- # - togethercomputer/Long-Data-Collections
87
- # - emozilla/pg19
88
- # - MathGenie/MathCode-Pile
89
- # - KingNish/reasoning-base-20k
90
- # - nvidia/OpenMathInstruct-2
91
- # - LLM360/TxT360
92
- # - neuralwork/arxiver
93
  ---
94
 
95
- # Huginn-0125
96
- This is Huginn, version 01/25. This is a latent recurrent-depth model with 3.5B parameters, trained for 800B tokens on AMD MI250X machines. This is a proof-of-concept model, but surprisingly capable in reasoning and code given its training budget and size.
97
- All details on this model can be found in the tech report: "Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach."
98
-
99
- 8 intermediate checkpoints of the model can be found in its collection. Additional intermediate checkpoints are available upon request while we find a place to host all ~350 of them. The data used to train
100
- this model is publicly available (entirely on Hugging Face), and scripts provided with the pretraining code at https://github.com/seal-rg/recurrent-pretraining can be used to repeat our preprocessing and our entire training run.
101
-
102
- <img src="asset2.jpeg" width="60%">
103
-
104
-
105
-
106
- ## Table of Contents
107
-
108
- 1. [How to Use](#downloading-and-using-the-model)
109
- 2. [Advanced Usage](#advanced-features)
110
- 3. [Model Summary](#model-summary)
111
- 4. [Limitations](#limitations)
112
- 5. [Technical Details](#training)
113
- 6. [License](#license)
114
- 7. [Citation](#citation)
115
-
116
-
117
- ## Downloading and Using the Model
118
- Load the model like this:
119
- ```python
120
- import torch
121
- from transformers import AutoModelForCausalLM, AutoTokenizer
122
-
123
- model = AutoModelForCausalLM.from_pretrained("tomg-group-umd/huginn-0125", torch_dtype=torch.bfloat16, trust_remote_code=True)
124
- tokenizer = AutoTokenizer.from_pretrained("tomg-group-umd/huginn-0125")
125
- ```
126
- ### Modifying the Model's Depth at Test Time:
127
- By providing the argument `num_steps`, the model will execute a forward pass with that amount of compute:
128
- ```python
129
- input_ids = tokenizer.encode("The capital of Westphalia is", return_tensors="pt", add_special_tokens=True).to(device)
130
- model.eval()
131
- model.to(device)
132
-
133
- model(input_ids, num_steps=32)
134
- ```
135
- The model has about 1.5B parameters in non-recurrent code, 0.5B parameters in the embedding, and 1.5B recurrent parameters, so, as a guideline,
136
- the number of materialized parameters is `num_steps * 1.5B + 2B`. Playing with this parameter is what makes this model interesting, and different from fixed-depth transformers!
137
- The model is trained to accept an arbitrary number of steps. However, using fewer than 4 steps will result in very coarse answers. If given enough context to reason about, benchmarks show the model improving up to around `num_steps=64`. Beyond that, more steps generally do not hurt, but we see no further improvements.
138
-
139
- *Note*: Due to an upload issue the model is currently stored on HF with 2 copies of the tied embedding, instead of just one. This will be fixed in a future release.
140
-
141
- ### Inference
142
- The model was trained with bfloat16-mixed precision, so we recommend using `bfloat16` to run inference (or AMP bfloat16-mixed precision, if you really want). All benchmarks were evaluated in pure `bfloat16`.
143
-
144
- ### Sampling
145
- The model can be used like a normal HF model to generate text with KV-caching working as expected. You can provide `num_steps` directly to the `generate` call, for example:
146
- ```
147
- model.eval()
148
- config = GenerationConfig(max_length=256, stop_strings=["<|end_text|>", "<|end_turn|>"],
149
- use_cache=True,
150
- do_sample=False, temperature=None, top_k=None, top_p=None, min_p=None,
151
- return_dict_in_generate=True,
152
- eos_token_id=65505,bos_token_id=65504,pad_token_id=65509)
153
-
154
-
155
- input_ids = tokenizer.encode("The capital of Westphalia is", return_tensors="pt", add_special_tokens=True).to(device)
156
- outputs = model.generate(input_ids, config, tokenizer=tokenizer, num_steps=16)
157
- ```
158
-
159
- *Note*: `num_steps` and other model arguments CANNOT be included in the `GenerationConfig`, they will shadow model args at runtime.
160
-
161
-
162
- ### Chat Templating
163
-
164
- The model was not finetuned or post-trained, but due to inclusion of instruction data during pretraining, natively understand its chat template. You can chat with the model like so
165
- ```
166
- messages = []
167
- messages.append({"role": "system", "content" : You are a helpful assistant."}
168
- messages.append({"role": "user", "content" : What do you think of Goethe's Faust?"}
169
- chat_input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
170
- print(chat_input)
171
- input_ids = tokenizer.encode(chat_input, return_tensors="pt", add_special_tokens=False).to(device)
172
-
173
- model.generate(input_ids, config, num_steps=64, tokenizer=tokenizer)
174
- ```
175
-
176
- ### KV-cache Details
177
- The model requires its own KV-cache implementation `HuginnDynamicCache`, otherwise the KV-caches of later calls to the recurrent block will overwrite the earlier ones.
178
- The current implementation will always try to inject this Cache implementation, but that may break with huggingface updates. If you do not use generate, but implement your own generation, use a pattern like this:
179
-
180
- ```python
181
- # first step:
182
- past_key_values = None
183
- outputs = model(input_ids=input_ids, use_cache=True, past_key_values=past_key_values)
184
- past_key_values = outputs.past_key_values # Should be an instance of HuginnDynamicCache
185
- # next step
186
- outputs = model(input_ids=input_ids, use_cache=True, past_key_values=past_key_values)
187
- ```
188
-
189
- ## Advanced Features
190
-
191
- ### Per-Token Adaptive Compute
192
- When generating, you can also a variable amount of compute per-token. The model is not trained for this, so this is a proof-of-concept, that can do this task zero-shot.
193
- You can pick between a few sane stopping rules, `entropy-diff`, `latent-diff`,`kl` and `argmax-stability`, via `criterion=kl`. The exit threshold can be modified via `exit_threshold=5e-4`.
194
- We suggest using `kl` for interesting exits and `argmax-stability` for conservative exits. Note that using these variables overrides the default generation function. Not all arguments that are valid for the normal `generate` call are valid here. To make this more explicit, you can also directly call `generate_with_adaptive_compute`:
195
-
196
- ```python
197
- from transformers import TextStreamer
198
- streamer = TextStreamer(tokenizer)
199
-
200
- model.generate_with_adaptive_compute(input_ids, config, num_steps=64, tokenizer=tokenizer, streamer=streamer,
201
- continuous_compute=False, criterion="kl", exit_threshold=5e-4, cache_kwargs={"lookup_strategy": "latest-m4"})
202
-
203
- ```
204
- Your cache strategy should be set to `"latest-m4"` if using adaptive compute.
205
-
206
- ### KV-cache Sharing
207
- To reduce KV cache memory requirements, the model can be run with fewer KV-caches, with later iterations in the recurrence overwriting earlier caches. To use this feature, set
208
- the cache argument `lookup_strategy` to include `compress-s16` (where the last number determine the size of the cache).
209
- ```
210
- model.generate_with_adaptive_compute(input_ids, config, num_steps=64, tokenizer=tokenizer, streamer=streamer,
211
- continuous_compute=False, cache_kwargs={"lookup_strategy": "compress-s16"})
212
- ```
213
- You can combine this per-token adaptive compute. In that case your lookup strategy should be `latest-m4-compress-s16`.
214
-
215
- ### Warmstart / Continuous CoT
216
- At each generation step, the recurrence can be warmstarted with the final state from the previous token by setting `continuous_compute=True`, like so
217
- ```
218
- model.generate_with_adaptive_compute(input_ids, config, num_steps=64, tokenizer=tokenizer, streamer=streamer, continuous_compute=True)
219
- ```
220
-
221
-
222
-
223
- ## Model Summary
224
- The model is primarily structured around decoder-only transformer blocks. However these blocks are structured into three functional groups, the __prelude__ \\(P\\),
225
- which embeds the input data into a latent space using multiple transformer layers, then the core __recurrent block__ \\(R\\), which is the central unit of recurrent
226
- computation modifying states \\(\mathbf{s} \in \mathbb{R}^{n \times h }\\), and finally the __coda__ \\(C\\), which un-embeds from latent space using several layers and
227
- also contains the prediction head of the model.
228
-
229
- Given a number of recurrent iterations \\(r\\), and a sequence of input tokens \\(\mathbf{x} \in V^n\\) these groups are used in the following way to produce output
230
- probabilities \\(\mathbf{p} \in \mathbb{R}^{n \times |V|}\\).
231
-
232
- $$\mathbf{e} = P(\mathbf{x})$$
233
-
234
- $$\mathbf{s}_0 \sim \mathcal{N}(\mathbf{0}, \sigma^2 I_{n\cdot h})$$
235
-
236
- $$\mathbf{s}_i = R(\mathbf{e}, \mathbf{s}_{i-1}) \; \textnormal{for} \; i \in \lbrace 1, \dots, r \rbrace$$
237
-
238
- $$\mathbf{p} = R(\mathbf{s}_r)$$
239
- where \\(\sigma\\) is the standard deviation of the initial random state. Given an init random state \\(\mathbf{s}_0\\), the model repeatedly applies the core
240
- block \\(R\\), which accepts the latent state \\(\mathbf{s}_{i-1}\\) and the embedded input \\(\mathbf{e}\\) and outputs a new latent state \\(\mathbf{s}_i\\).
241
- After finishing all iterations, the coda block processes the last state and produces the probabilities of the next token.
242
-
243
- Please refer to the paper for benchmark performance on standard benchmarks.
244
-
245
- ## Limitations
246
- Our checkpoint is trained for only 47000 steps on a broadly untested data mixture with a constant learning rate. As an academic project, the model is trained only on publicly available data and the 800B token count, while large in comparison to older fully open-source models such as the Pythia series, is small in comparison to modern open-source efforts such as OLMo, and tiny in comparison to the datasets used to train industrial open-weight models.
247
-
248
- ## Technical Specifications
249
- This model was trained on 21 segments of 4096 AMD MI-250X GPUs on the OLCF Frontier Supercomputer in early December 2024. The model was trained using ROCM 6.2.0, and PyTorch 2.6 nightly pre-release 24/11/02. The code used to train the model can be found at https://github.com/seal-rg/recurrent-pretraining.
250
-
251
- ## License
252
- This model is released under the [apache-2.0](https://choosealicense.com/licenses/apache-2.0/) licence.
253
-
254
- ## Citation
255
- ```
256
- @article{geiping_scaling_2025,
257
- title = {Scaling up {{Test-Time Compute}} with {{Latent Reasoning}}: {{A Recurrent Depth Approach}}},
258
- shorttitle = {Scaling up {{Test-Time Compute}} with {{Latent Reasoning}}},
259
- author = {Geiping, Jonas and McLeish, Sean and Jain, Neel and Kirchenbauer, John and Singh, Siddharth and Bartoldson, Brian R. and Kailkhura, Bhavya and Bhatele, Abhinav and Goldstein, Tom},
260
- year = {2025},
261
- month = feb,
262
- eprint = {2502.05171},
263
- primaryclass = {cs},
264
- publisher = {arXiv},
265
- doi = {10.48550/arXiv.2502.05171},
266
- url = {http://arxiv.org/abs/2502.05171},
267
- urldate = {2025-02-10},
268
- archiveprefix = {arXiv},
269
- keywords = {Computer Science - Computation and Language,Computer Science - Machine Learning},
270
- journal = {arxiv:2502.05171[cs]}
271
- }
272
- ```
273
 
274
- ## Contact
275
- Please, feel free to contact us with any questions, or open an discussion thread on Hugging Face.
 
1
  ---
2
  library_name: transformers
 
 
 
 
 
 
 
 
3
  pipeline_tag: text-generation
4
+ license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
+ This repository contains the model described in the paper [Scaling up Test-Time Compute with Latent Reasoning: A Recurrent Depth Approach](https://huggingface.co/papers/2502.05171).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ Project page: https://sites.google.com/view/eagle-llm
10
+ Code: https://github.com/seal-rg/recurrent-pretraining