|
import base64
|
|
from io import BytesIO
|
|
import json
|
|
import os
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
from .custom_st_2 import OtherClass
|
|
import requests
|
|
import torch
|
|
from torch import nn
|
|
from transformers import AutoConfig, AutoModel, AutoTokenizer, AutoImageProcessor
|
|
from PIL import Image
|
|
|
|
OtherClass()
|
|
|
|
class Transformer(nn.Module):
|
|
"""Huggingface AutoModel to generate token embeddings.
|
|
Loads the correct class, e.g. BERT / RoBERTa etc.
|
|
|
|
Args:
|
|
model_name_or_path: Huggingface models name
|
|
(https://huggingface.co/models)
|
|
max_seq_length: Truncate any inputs longer than max_seq_length
|
|
model_args: Keyword arguments passed to the Huggingface
|
|
Transformers model
|
|
tokenizer_args: Keyword arguments passed to the Huggingface
|
|
Transformers tokenizer
|
|
config_args: Keyword arguments passed to the Huggingface
|
|
Transformers config
|
|
cache_dir: Cache dir for Huggingface Transformers to store/load
|
|
models
|
|
do_lower_case: If true, lowercases the input (independent if the
|
|
model is cased or not)
|
|
tokenizer_name_or_path: Name or path of the tokenizer. When
|
|
None, then model_name_or_path is used
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_name_or_path: str,
|
|
max_seq_length: Optional[int] = None,
|
|
model_args: Optional[Dict[str, Any]] = None,
|
|
tokenizer_args: Optional[Dict[str, Any]] = None,
|
|
config_args: Optional[Dict[str, Any]] = None,
|
|
cache_dir: Optional[str] = None,
|
|
do_lower_case: bool = False,
|
|
tokenizer_name_or_path: str = None,
|
|
) -> None:
|
|
super(Transformer, self).__init__()
|
|
self.config_keys = ["max_seq_length", "do_lower_case"]
|
|
self.do_lower_case = do_lower_case
|
|
if model_args is None:
|
|
model_args = {}
|
|
if tokenizer_args is None:
|
|
tokenizer_args = {}
|
|
if config_args is None:
|
|
config_args = {}
|
|
|
|
config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
|
|
self.jina_clip = AutoModel.from_pretrained(
|
|
model_name_or_path, config=config, cache_dir=cache_dir, **model_args
|
|
)
|
|
|
|
if max_seq_length is not None and "model_max_length" not in tokenizer_args:
|
|
tokenizer_args["model_max_length"] = max_seq_length
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path,
|
|
cache_dir=cache_dir,
|
|
**tokenizer_args,
|
|
)
|
|
self.preprocessor = AutoImageProcessor.from_pretrained(
|
|
tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path,
|
|
cache_dir=cache_dir,
|
|
**tokenizer_args,
|
|
)
|
|
|
|
|
|
if max_seq_length is None:
|
|
if (
|
|
hasattr(self.jina_clip, "config")
|
|
and hasattr(self.jina_clip.config, "max_position_embeddings")
|
|
and hasattr(self.tokenizer, "model_max_length")
|
|
):
|
|
max_seq_length = min(self.jina_clip.config.max_position_embeddings, self.tokenizer.model_max_length)
|
|
|
|
self.max_seq_length = max_seq_length
|
|
|
|
if tokenizer_name_or_path is not None:
|
|
self.jina_clip.config.tokenizer_class = self.tokenizer.__class__.__name__
|
|
|
|
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
"""Returns token_embeddings, cls_token"""
|
|
if "input_ids" in features:
|
|
embedding = self.jina_clip.get_text_features(input_ids=features["input_ids"])
|
|
else:
|
|
embedding = self.jina_clip.get_image_features(pixel_values=features["pixel_values"])
|
|
return {"sentence_embedding": embedding}
|
|
|
|
def get_word_embedding_dimension(self) -> int:
|
|
return self.config.text_config.embed_dim
|
|
|
|
def decode_data_image(data_image_str):
|
|
header, data = data_image_str.split(',', 1)
|
|
image_data = base64.b64decode(data)
|
|
return Image.open(BytesIO(image_data))
|
|
|
|
def tokenize(
|
|
self, batch: Union[List[str]], padding: Union[str, bool] = True
|
|
) -> Dict[str, torch.Tensor]:
|
|
"""Tokenizes a text and maps tokens to token-ids"""
|
|
images = []
|
|
texts = []
|
|
for sample in batch:
|
|
if isinstance(sample, str):
|
|
if sample.startswith('http'):
|
|
response = requests.get(sample)
|
|
images.append(Image.open(BytesIO(response.content)).convert('RGB'))
|
|
elif sample.startswith('data:image/'):
|
|
images.append(self.decode_data_image(sample).convert('RGB'))
|
|
else:
|
|
|
|
try:
|
|
images.append(Image.open(sample).convert('RGB'))
|
|
except:
|
|
texts.append(sample)
|
|
elif isinstance(sample, Image.Image):
|
|
images.append(sample.convert('RGB'))
|
|
|
|
if images and texts:
|
|
raise ValueError('Batch must contain either images or texts, not both')
|
|
|
|
if texts:
|
|
return self.tokenizer(
|
|
texts,
|
|
padding=padding,
|
|
truncation="longest_first",
|
|
return_tensors="pt",
|
|
max_length=self.max_seq_length,
|
|
)
|
|
elif images:
|
|
return self.preprocessor(images)
|
|
return {}
|
|
|
|
def save(self, output_path: str, safe_serialization: bool = True) -> None:
|
|
self.jina_clip.save_pretrained(output_path, safe_serialization=safe_serialization)
|
|
self.tokenizer.save_pretrained(output_path)
|
|
self.preprocessor.save_pretrained(output_path)
|
|
|
|
@staticmethod
|
|
def load(input_path: str) -> "Transformer":
|
|
|
|
for config_name in [
|
|
"sentence_bert_config.json",
|
|
"sentence_roberta_config.json",
|
|
"sentence_distilbert_config.json",
|
|
"sentence_camembert_config.json",
|
|
"sentence_albert_config.json",
|
|
"sentence_xlm-roberta_config.json",
|
|
"sentence_xlnet_config.json",
|
|
]:
|
|
sbert_config_path = os.path.join(input_path, config_name)
|
|
if os.path.exists(sbert_config_path):
|
|
break
|
|
|
|
with open(sbert_config_path) as fIn:
|
|
config = json.load(fIn)
|
|
|
|
if "model_args" in config and "trust_remote_code" in config["model_args"]:
|
|
config["model_args"].pop("trust_remote_code")
|
|
if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]:
|
|
config["tokenizer_args"].pop("trust_remote_code")
|
|
if "config_args" in config and "trust_remote_code" in config["config_args"]:
|
|
config["config_args"].pop("trust_remote_code")
|
|
return Transformer(model_name_or_path=input_path, **config)
|
|
|