--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-qnli-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QNLI type: tmnam20/VieGLUE config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.8984074684239429 --- # mdeberta-v3-base-qnli-10 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2859 - Accuracy: 0.8984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3968 | 0.15 | 500 | 0.3264 | 0.8623 | | 0.3826 | 0.31 | 1000 | 0.2996 | 0.8774 | | 0.3478 | 0.46 | 1500 | 0.2894 | 0.8845 | | 0.2959 | 0.61 | 2000 | 0.2745 | 0.8883 | | 0.3228 | 0.76 | 2500 | 0.2640 | 0.8905 | | 0.2899 | 0.92 | 3000 | 0.2723 | 0.8925 | | 0.2269 | 1.07 | 3500 | 0.2850 | 0.8935 | | 0.2614 | 1.22 | 4000 | 0.2607 | 0.8984 | | 0.2508 | 1.37 | 4500 | 0.2831 | 0.8878 | | 0.2563 | 1.53 | 5000 | 0.2556 | 0.8960 | | 0.2485 | 1.68 | 5500 | 0.2618 | 0.9019 | | 0.2373 | 1.83 | 6000 | 0.2600 | 0.8953 | | 0.2361 | 1.99 | 6500 | 0.2545 | 0.9023 | | 0.162 | 2.14 | 7000 | 0.3093 | 0.8997 | | 0.2115 | 2.29 | 7500 | 0.2685 | 0.9010 | | 0.176 | 2.44 | 8000 | 0.2966 | 0.8982 | | 0.2047 | 2.6 | 8500 | 0.2767 | 0.8982 | | 0.1831 | 2.75 | 9000 | 0.2918 | 0.8968 | | 0.1818 | 2.9 | 9500 | 0.2818 | 0.8979 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0