--- library_name: transformers license: apache-2.0 datasets: - anthracite-org/kalo-opus-instruct-22k-no-refusal - Nopm/Opus_WritingStruct - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned - Gryphe/Sonnet3.5-Charcard-Roleplay - Gryphe/ChatGPT-4o-Writing-Prompts - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - nothingiisreal/Reddit-Dirty-And-WritingPrompts - allura-org/Celeste-1.x-data-mixture - cognitivecomputations/dolphin-2.9.3 base_model: EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2 tags: - generated_from_trainer - TensorBlock - GGUF model-index: - name: EVA-Qwen2.5-32B-SFFT-v0.1 results: [] ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2 - GGUF This repo contains GGUF format model files for [EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [EVA-Qwen2.5-32B-v0.2-Q2_K.gguf](https://huggingface.co/tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF/blob/main/EVA-Qwen2.5-32B-v0.2-Q2_K.gguf) | Q2_K | 12.313 GB | smallest, significant quality loss - not recommended for most purposes | | [EVA-Qwen2.5-32B-v0.2-Q3_K_S.gguf](https://huggingface.co/tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF/blob/main/EVA-Qwen2.5-32B-v0.2-Q3_K_S.gguf) | Q3_K_S | 14.392 GB | very small, high quality loss | | [EVA-Qwen2.5-32B-v0.2-Q3_K_M.gguf](https://huggingface.co/tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF/blob/main/EVA-Qwen2.5-32B-v0.2-Q3_K_M.gguf) | Q3_K_M | 15.935 GB | very small, high quality loss | | [EVA-Qwen2.5-32B-v0.2-Q3_K_L.gguf](https://huggingface.co/tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF/blob/main/EVA-Qwen2.5-32B-v0.2-Q3_K_L.gguf) | Q3_K_L | 17.247 GB | small, substantial quality loss | | [EVA-Qwen2.5-32B-v0.2-Q4_0.gguf](https://huggingface.co/tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF/blob/main/EVA-Qwen2.5-32B-v0.2-Q4_0.gguf) | Q4_0 | 18.640 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [EVA-Qwen2.5-32B-v0.2-Q4_K_S.gguf](https://huggingface.co/tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF/blob/main/EVA-Qwen2.5-32B-v0.2-Q4_K_S.gguf) | Q4_K_S | 18.784 GB | small, greater quality loss | | [EVA-Qwen2.5-32B-v0.2-Q4_K_M.gguf](https://huggingface.co/tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF/blob/main/EVA-Qwen2.5-32B-v0.2-Q4_K_M.gguf) | Q4_K_M | 19.851 GB | medium, balanced quality - recommended | | [EVA-Qwen2.5-32B-v0.2-Q5_0.gguf](https://huggingface.co/tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF/blob/main/EVA-Qwen2.5-32B-v0.2-Q5_0.gguf) | Q5_0 | 22.638 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [EVA-Qwen2.5-32B-v0.2-Q5_K_S.gguf](https://huggingface.co/tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF/blob/main/EVA-Qwen2.5-32B-v0.2-Q5_K_S.gguf) | Q5_K_S | 22.638 GB | large, low quality loss - recommended | | [EVA-Qwen2.5-32B-v0.2-Q5_K_M.gguf](https://huggingface.co/tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF/blob/main/EVA-Qwen2.5-32B-v0.2-Q5_K_M.gguf) | Q5_K_M | 23.262 GB | large, very low quality loss - recommended | | [EVA-Qwen2.5-32B-v0.2-Q6_K.gguf](https://huggingface.co/tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF/blob/main/EVA-Qwen2.5-32B-v0.2-Q6_K.gguf) | Q6_K | 26.886 GB | very large, extremely low quality loss | | [EVA-Qwen2.5-32B-v0.2-Q8_0.gguf](https://huggingface.co/tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF/blob/main/EVA-Qwen2.5-32B-v0.2-Q8_0.gguf) | Q8_0 | 34.821 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF --include "EVA-Qwen2.5-32B-v0.2-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/EVA-Qwen2.5-32B-v0.2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```