Spaces:
Running
Running
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import copy | |
import os | |
import os.path as osp | |
import time | |
import warnings | |
import click | |
import yaml | |
from glob import glob | |
import torch | |
import torch.distributed as dist | |
from vit_utils.util import init_random_seed, set_random_seed | |
from vit_utils.dist_util import get_dist_info, init_dist | |
from vit_utils.logging import get_root_logger | |
import configs.ViTPose_small_coco_256x192 as s_cfg | |
import configs.ViTPose_base_coco_256x192 as b_cfg | |
import configs.ViTPose_large_coco_256x192 as l_cfg | |
import configs.ViTPose_huge_coco_256x192 as h_cfg | |
from vit_models.model import ViTPose | |
from datasets.COCO import COCODataset | |
from vit_utils.train_valid_fn import train_model | |
CUR_PATH = osp.dirname(__file__) | |
def main(config_path, model_name): | |
cfg = {'b':b_cfg, | |
's':s_cfg, | |
'l':l_cfg, | |
'h':h_cfg}.get(model_name.lower()) | |
# Load config.yaml | |
with open(config_path, 'r') as f: | |
cfg_yaml = yaml.load(f, Loader=yaml.SafeLoader) | |
for k, v in cfg_yaml.items(): | |
if hasattr(cfg, k): | |
raise ValueError(f"Already exists {k} in config") | |
else: | |
cfg.__setattr__(k, v) | |
# set cudnn_benchmark | |
if cfg.cudnn_benchmark: | |
torch.backends.cudnn.benchmark = True | |
# Set work directory (session-level) | |
if not hasattr(cfg, 'work_dir'): | |
cfg.__setattr__('work_dir', f"{CUR_PATH}/runs/train") | |
if not osp.exists(cfg.work_dir): | |
os.makedirs(cfg.work_dir) | |
session_list = sorted(glob(f"{cfg.work_dir}/*")) | |
if len(session_list) == 0: | |
session = 1 | |
else: | |
session = int(os.path.basename(session_list[-1])) + 1 | |
session_dir = osp.join(cfg.work_dir, str(session).zfill(3)) | |
os.makedirs(session_dir) | |
cfg.__setattr__('work_dir', session_dir) | |
if cfg.autoscale_lr: | |
# apply the linear scaling rule (https://arxiv.org/abs/1706.02677) | |
cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8 | |
# init distributed env first, since logger depends on the dist info. | |
if cfg.launcher == 'none': | |
distributed = False | |
if len(cfg.gpu_ids) > 1: | |
warnings.warn( | |
f"We treat {cfg['gpu_ids']} as gpu-ids, and reset to " | |
f"{cfg['gpu_ids'][0:1]} as gpu-ids to avoid potential error in " | |
"non-distribute training time.") | |
cfg.gpu_ids = cfg.gpu_ids[0:1] | |
else: | |
distributed = True | |
init_dist(cfg.launcher, **cfg.dist_params) | |
# re-set gpu_ids with distributed training mode | |
_, world_size = get_dist_info() | |
cfg.gpu_ids = range(world_size) | |
# init the logger before other steps | |
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) | |
log_file = osp.join(session_dir, f'{timestamp}.log') | |
logger = get_root_logger(log_file=log_file) | |
# init the meta dict to record some important information such as | |
# environment info and seed, which will be logged | |
meta = dict() | |
# log some basic info | |
logger.info(f'Distributed training: {distributed}') | |
# set random seeds | |
seed = init_random_seed(cfg.seed) | |
logger.info(f"Set random seed to {seed}, " | |
f"deterministic: {cfg.deterministic}") | |
set_random_seed(seed, deterministic=cfg.deterministic) | |
meta['seed'] = seed | |
# Set model | |
model = ViTPose(cfg.model) | |
if cfg.resume_from: | |
# Load ckpt partially | |
ckpt_state = torch.load(cfg.resume_from)['state_dict'] | |
ckpt_state.pop('keypoint_head.final_layer.bias') | |
ckpt_state.pop('keypoint_head.final_layer.weight') | |
model.load_state_dict(ckpt_state, strict=False) | |
# freeze the backbone, leave the head to be finetuned | |
model.backbone.frozen_stages = model.backbone.depth - 1 | |
model.backbone.freeze_ffn = True | |
model.backbone.freeze_attn = True | |
model.backbone._freeze_stages() | |
# Set dataset | |
datasets_train = COCODataset( | |
root_path=cfg.data_root, | |
data_version="feet_train", | |
is_train=True, | |
use_gt_bboxes=True, | |
image_width=192, | |
image_height=256, | |
scale=True, | |
scale_factor=0.35, | |
flip_prob=0.5, | |
rotate_prob=0.5, | |
rotation_factor=45., | |
half_body_prob=0.3, | |
use_different_joints_weight=True, | |
heatmap_sigma=3, | |
soft_nms=False | |
) | |
datasets_valid = COCODataset( | |
root_path=cfg.data_root, | |
data_version="feet_val", | |
is_train=False, | |
use_gt_bboxes=True, | |
image_width=192, | |
image_height=256, | |
scale=False, | |
scale_factor=0.35, | |
flip_prob=0.5, | |
rotate_prob=0.5, | |
rotation_factor=45., | |
half_body_prob=0.3, | |
use_different_joints_weight=True, | |
heatmap_sigma=3, | |
soft_nms=False | |
) | |
train_model( | |
model=model, | |
datasets_train=datasets_train, | |
datasets_valid=datasets_valid, | |
cfg=cfg, | |
distributed=distributed, | |
validate=cfg.validate, | |
timestamp=timestamp, | |
meta=meta | |
) | |
if __name__ == '__main__': | |
main() | |