Spaces:
Running
Running
File size: 6,277 Bytes
e3641b1 d34196f e3641b1 d34196f e3641b1 d34196f e3641b1 d34196f e3641b1 d34196f e3641b1 d34196f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from utils import (
predict_keypoints_vitpose,
get_edge_groups,
get_series,
z_score_normalization,
modify_student_frame,
modify_student_frame_2,
get_video_frames,
check_and_download_models
)
from config import (
CONNECTIONS_VIT_FULL,
CONNECTIONS_FOR_ERROR,
EDGE_GROUPS_FOR_ERRORS,
EDGE_GROUPS_FOR_SUMMARY,
get_thresholds
)
from dtaidistance import dtw
import numpy as np
from scipy.signal import savgol_filter
from scipy.stats import mstats
import datetime
from datetime import timedelta
import cv2
def video_identity(dtw_mean, dtw_filter, angles_sensitive, angles_common, angles_insensitive, trigger_state, video_teacher, video_student):
check_and_download_models()
detection_result_teacher = predict_keypoints_vitpose(
video_path=video_teacher,
model_path="models/vitpose-b-wholebody.pth",
model_name="b",
detector_path="models/yolov8s.pt"
)
detection_result_student = predict_keypoints_vitpose(
video_path=video_student,
model_path="models/vitpose-b-wholebody.pth",
model_name="b",
detector_path="models/yolov8s.pt"
)
detection_result_teacher_angles = get_series(detection_result_teacher[:, :,:-1], EDGE_GROUPS_FOR_ERRORS).T
detection_result_student_angles = get_series(detection_result_student[:, :,:-1], EDGE_GROUPS_FOR_ERRORS).T
edge_groups_for_dtw = get_edge_groups(CONNECTIONS_VIT_FULL)
serieses_teacher = get_series(detection_result_teacher[:, :,:-1], edge_groups_for_dtw)
serieses_student = get_series(detection_result_student[:, :,:-1], edge_groups_for_dtw)
serieses_teacher = z_score_normalization(serieses_teacher)
serieses_student = z_score_normalization(serieses_student)
list_of_paths = []
for idx in range(len(serieses_teacher)):
series_teacher = np.array(serieses_teacher[idx])
series_student = np.array(serieses_student[idx])
_ , paths = dtw.warping_paths(series_teacher, series_student, window=50)
path = dtw.best_path(paths)
list_of_paths.append(path)
all_dtw_tupples = []
for path in list_of_paths:
all_dtw_tupples.extend(path)
mean_path = []
for student_frame in range(len(serieses_student[0])):
frame_from_teacher = []
for frame_teacher in all_dtw_tupples:
if frame_teacher[1] == student_frame:
frame_from_teacher.append(frame_teacher[0])
mean_path.append((int(mstats.winsorize(np.array(frame_from_teacher), limits=[dtw_mean, dtw_mean]).mean()), student_frame))
path_array = np.array(mean_path)
smoothed_data = savgol_filter(path_array, window_length=dtw_filter, polyorder=0, axis=0)
path_array = np.array(smoothed_data).astype(int)
video_teacher_loaded = get_video_frames(video_teacher)
video_student_loaded = get_video_frames(video_student)
alignments = np.unique(path_array, axis=0)
threshouds_for_errors = get_thresholds(angles_sensitive, angles_common, angles_insensitive)
# ======================================================================================
trigger_1 = []
trigger_2 = []
save_teacher_frames = []
save_student_frames = []
all_text_summaries = []
for idx, alignment in enumerate(alignments):
frame_student_out, frame_teacher_out, trigger_1, trigger_2, text_info_summary = modify_student_frame(
detection_result_student=detection_result_student,
detection_result_teacher_angles=detection_result_teacher_angles,
detection_result_student_angles=detection_result_student_angles,
video_teacher=video_teacher_loaded,
video_student=video_student_loaded,
alignment_frames=alignment,
edge_groups=EDGE_GROUPS_FOR_ERRORS,
connections=CONNECTIONS_FOR_ERROR,
thresholds=threshouds_for_errors,
previously_trigered=trigger_1,
previously_trigered_2=trigger_2,
triger_state=trigger_state,
text_dictionary=EDGE_GROUPS_FOR_SUMMARY
)
save_teacher_frames.append(frame_teacher_out)
save_student_frames.append(frame_student_out)
text_info_summary = [(log, idx) for log in text_info_summary]
all_text_summaries.extend(text_info_summary)
save_teacher_frames = np.array(save_teacher_frames)
save_student_frames = np.array(save_student_frames)
save_teacher_frames_resized = np.array([cv2.resize(frame, (1280, 720)) for frame in save_teacher_frames])
save_student_frames_resized = np.array([cv2.resize(frame, (1280, 720)) for frame in save_student_frames])
# print(f"video shape: {save_student_frames.shape}")
print(f"shape s: {save_student_frames.shape}")
print(f"shape t: {save_teacher_frames.shape}")
concat_video = []
# print(alignments)
concat_video = np.concatenate((save_teacher_frames_resized, save_student_frames_resized), axis=2)
concat_video = np.array(concat_video)
current_time = datetime.datetime.now()
timestamp_str = current_time.strftime("%Y_%m-%d_%H_%M_%S")
video_path = f"videos/pose_{timestamp_str}.mp4"
out = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'mp4v'), 30, (1280*2, 720))
for frame in concat_video:
out.write(frame)
out.release()
all_text_summaries_clean = list(set(all_text_summaries))
all_text_summaries_clean.sort(key=lambda x: x[1])
general_summary = []
for log in all_text_summaries_clean:
comment, frame = log
total_seconds = frame / 30
general_summary.append(f"{comment} on frame {frame}. Video time: {str(timedelta(seconds=total_seconds))[3:-4]}")
general_summary = "\n".join(general_summary)
log_path = f"logs/log_{timestamp_str}.txt"
content = f"""
Settings:
Dynamic Time Warping:
- Winsorize mean: {dtw_mean}
- Savitzky-Golay Filter: {dtw_filter}
Thresholds:
- Sensitive: {angles_sensitive}
- Standart: {angles_common}
- Insensitive: {angles_insensitive}
Patience:
- trigger count: {trigger_state}
Error logs:
{general_summary}
"""
with open(log_path, "w") as file:
file.write(content)
return video_path, general_summary, log_path |