File size: 3,827 Bytes
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import re
import string
import warnings


def normalize_number_str(number_str: str) -> float:
    # we replace these common units and commas to allow
    # conversion to float
    for char in ["$", "%", ","]:
        number_str = number_str.replace(char, "")
    try:
        return float(number_str)
    except ValueError:
        print(f"String {number_str} cannot be normalized to number str.")
        return float("inf")


def split_string(
    s: str,
    char_list: list[str] = [",", ";"],
) -> list[str]:
    pattern = f"[{''.join(char_list)}]"
    return re.split(pattern, s)


def is_float(element: any) -> bool:
    try:
        float(element)
        return True
    except ValueError:
        return False


def question_scorer(
    model_answer: str,
    ground_truth: str,
) -> bool:
    # if gt is a number
    if is_float(ground_truth):
        normalized_answer = normalize_number_str(str(model_answer))
        return normalized_answer == float(ground_truth)

    # if gt is a list
    elif any(char in ground_truth for char in [",", ";"]):
        # question with the fish: normalization removes punct

        gt_elems = split_string(ground_truth)
        ma_elems = split_string(model_answer)

        # check length is the same
        if len(gt_elems) != len(ma_elems):
            warnings.warn("Answer lists have different lengths, returning False.", UserWarning)
            return False

        # compare each element as float or str
        comparisons = []
        for ma_elem, gt_elem in zip(ma_elems, gt_elems):
            if is_float(gt_elem):
                normalized_ma_elem = normalize_number_str(ma_elem)
                comparisons.append(normalized_ma_elem == float(gt_elem))
            else:
                # we do not remove punct since comparisons can include punct
                comparisons.append(
                    normalize_str(ma_elem, remove_punct=False) == normalize_str(gt_elem, remove_punct=False)
                )
        return all(comparisons)

    # if gt is a str
    else:
        return normalize_str(model_answer) == normalize_str(ground_truth)


def check_prediction_contains_answer_letters_in_order(prediction, true_answer):
    prediction = prediction.lower()
    true_answer = true_answer.lower()
    if len(prediction) > len(true_answer) * 3:
        return False
    i = 0
    for letter in true_answer:
        if letter in prediction[i:]:
            i += prediction[i:].index(letter)
        else:
            return False
    return True


def check_close_call(prediction, true_answer, is_correct):
    if is_correct:
        return True
    else:
        if is_float(true_answer):
            return is_correct
        else:
            if (
                check_prediction_contains_answer_letters_in_order(str(prediction), str(true_answer))
                and len(str(true_answer)) * 0.5 <= len(str(prediction)) <= len(str(true_answer)) * 2
            ):
                print(f"Close call: {prediction} vs {true_answer}")
                return True
            else:
                return False


def normalize_str(input_str, remove_punct=True) -> str:
    """
    Normalize a string by:
    - Removing all white spaces
    - Optionally removing punctuation (if remove_punct is True)
    - Converting to lowercase
    Parameters:
    - input_str: str, the string to normalize
    - remove_punct: bool, whether to remove punctuation (default: True)
    Returns:
    - str, the normalized string
    """
    # Remove all white spaces. Required e.g for seagull vs. sea gull
    no_spaces = re.sub(r"\s", "", input_str)

    # Remove punctuation, if specified.
    if remove_punct:
        translator = str.maketrans("", "", string.punctuation)
        return no_spaces.lower().translate(translator)
    else:
        return no_spaces.lower()