File size: 31,374 Bytes
43fb491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
import gradio as gr
import base64
import json
import os
import shutil
import uuid
import glob
from huggingface_hub import CommitScheduler, HfApi, snapshot_download
from pathlib import Path
import git
from datasets import Dataset, Features, Value, Sequence, Image as ImageFeature
import threading
import time
from utils import process_and_push_dataset

api = HfApi(token=os.environ["HF_TOKEN"])
DATASET_REPO = "taesiri/BugsBunny-ManualEval-IntermediateSet"


# Download existing data from hub
def sync_with_hub():
    """
    Synchronize local data with the hub by cloning the dataset repo
    """
    print("Starting sync with hub...")
    data_dir = Path("./data")
    if data_dir.exists():
        # Backup existing data
        backup_dir = Path("./data_backup")
        if backup_dir.exists():
            shutil.rmtree(backup_dir)
        shutil.copytree(data_dir, backup_dir)

    # Clone/pull latest data from hub
    repo_url = f"https://huggingface.co/datasets/{DATASET_REPO}"
    hub_data_dir = Path("hub_data")

    if hub_data_dir.exists():
        # If repo exists, do a git pull
        print("Pulling latest changes...")
        repo = git.Repo(hub_data_dir)
        origin = repo.remotes.origin
        origin.pull()
    else:
        # Clone the repo
        print("Cloning repository...")
        git.Repo.clone_from(repo_url, hub_data_dir)

    # Merge hub data with local data
    hub_data_source = hub_data_dir / "data"
    if hub_data_source.exists():
        # Create data dir if it doesn't exist
        data_dir.mkdir(exist_ok=True)

        # Copy files from hub
        for item in hub_data_source.glob("*"):
            if item.is_dir():
                dest = data_dir / item.name
                if not dest.exists():  # Only copy if doesn't exist locally
                    shutil.copytree(item, dest)

    # Clean up cloned repo
    if hub_data_dir.exists():
        shutil.rmtree(hub_data_dir)
    print("Finished syncing with hub!")


scheduler = CommitScheduler(
    repo_id=DATASET_REPO,
    repo_type="dataset",
    folder_path="./data",
    path_in_repo="data",
    every=1,
)


def load_existing_questions():
    """
    Load all existing questions from the data directory
    Returns a list of tuples (question_id, question_preview)
    """
    questions = []
    data_dir = "./data"
    if not os.path.exists(data_dir):
        return questions

    for question_dir in glob.glob(os.path.join(data_dir, "*")):
        if os.path.isdir(question_dir):
            json_path = os.path.join(question_dir, "question.json")
            if os.path.exists(json_path):
                try:
                    with open(json_path, "r", encoding="utf-8") as f:
                        data = json.loads(f.read().strip())
                        question_id = os.path.basename(question_dir)
                        preview = (
                            f"{data['question'][:100]}..."
                            if len(data["question"]) > 100
                            else data["question"]
                        )
                        questions.append((question_id, f"{question_id}: {preview}"))
                except:
                    continue

    return sorted(questions, key=lambda x: x[1])


def load_question_data(question_id):
    """
    Load a specific question's data
    Returns a tuple of all form fields
    """
    if not question_id:
        return [None] * 26 + [None]  # Changed from gr.State(value=None) to just None

    # Extract the ID part before the colon from the dropdown selection
    question_id = (
        question_id.split(":")[0].strip() if ":" in question_id else question_id
    )

    json_path = os.path.join("./data", question_id, "question.json")
    if not os.path.exists(json_path):
        print(f"Question file not found: {json_path}")
        return [None] * 26 + [None]

    try:
        with open(json_path, "r", encoding="utf-8") as f:
            data = json.loads(f.read().strip())

        # Load images
        def load_image(image_path):
            if not image_path:
                return None
            full_path = os.path.join(
                "./data", question_id, os.path.basename(image_path)
            )
            return full_path if os.path.exists(full_path) else None

        question_images = data.get("question_images", [])
        rationale_images = data.get("rationale_images", [])

        return [
            data["author_info"]["name"],
            data["author_info"]["email_address"],
            data["author_info"]["institution"],
            (
                ",".join(data["question_categories"])
                if isinstance(data["question_categories"], list)
                else data["question_categories"]
            ),
            data.get("subquestions_1_text", "N/A"),
            data.get("subquestions_1_answer", "N/A"),
            data.get("subquestions_2_text", "N/A"),
            data.get("subquestions_2_answer", "N/A"),
            data.get("subquestions_3_text", "N/A"),
            data.get("subquestions_3_answer", "N/A"),
            data.get("subquestions_4_text", "N/A"),
            data.get("subquestions_4_answer", "N/A"),
            data.get("subquestions_5_text", "N/A"),
            data.get("subquestions_5_answer", "N/A"),
            data["question"],
            data["final_answer"],
            data.get("rationale_text", ""),
            data["image_attribution"],
            load_image(question_images[0] if question_images else None),
            load_image(question_images[1] if len(question_images) > 1 else None),
            load_image(question_images[2] if len(question_images) > 2 else None),
            load_image(question_images[3] if len(question_images) > 3 else None),
            load_image(rationale_images[0] if rationale_images else None),
            load_image(rationale_images[1] if len(rationale_images) > 1 else None),
            question_id,  # Changed from gr.State(value=question_id) to just question_id
        ]
    except Exception as e:
        print(f"Error loading question {question_id}: {str(e)}")
        return [None] * 26 + [None]


def generate_json_files(
    name,
    email_address,
    institution,
    question_categories,
    subquestion_1_text,
    subquestion_1_answer,
    subquestion_2_text,
    subquestion_2_answer,
    subquestion_3_text,
    subquestion_3_answer,
    subquestion_4_text,
    subquestion_4_answer,
    subquestion_5_text,
    subquestion_5_answer,
    question,
    final_answer,
    rationale_text,
    image_attribution,
    image1,
    image2,
    image3,
    image4,
    rationale_image1,
    rationale_image2,
    existing_id=None,  # New parameter for updating existing questions
):
    """
    For each request:
      1) Create a unique folder under ./data/ (or use existing if updating)
      2) Copy uploaded images (question + rationale) into that folder
      3) Produce JSON file with question data
      4) Return path to the JSON file
    """

    # Use existing ID if updating, otherwise generate new one
    request_id = existing_id if existing_id else str(uuid.uuid4())

    # Create parent data folder if it doesn't exist
    parent_data_folder = "./data"
    os.makedirs(parent_data_folder, exist_ok=True)

    # Create or clean request folder
    request_folder = os.path.join(parent_data_folder, request_id)
    if os.path.exists(request_folder):
        # If updating, remove old image files but only if new images are provided
        for f in glob.glob(os.path.join(request_folder, "*.png")):
            # Only remove if we have a new image to replace it
            filename = os.path.basename(f)
            if (
                ("question_image_1" in filename and image1)
                or ("question_image_2" in filename and image2)
                or ("question_image_3" in filename and image3)
                or ("question_image_4" in filename and image4)
                or ("rationale_image_1" in filename and rationale_image1)
                or ("rationale_image_2" in filename and rationale_image2)
            ):
                os.remove(f)
    else:
        os.makedirs(request_folder)

    # Convert None strings
    def safe_str(val):
        return val if val is not None else ""

    name = safe_str(name)
    email_address = safe_str(email_address)
    institution = safe_str(institution)
    image_attribution = safe_str(image_attribution)
    # Convert question_categories to list
    question_categories = (
        [cat.strip() for cat in safe_str(question_categories).split(",")]
        if question_categories
        else []
    )
    subquestion_1_text = safe_str(subquestion_1_text)
    subquestion_1_answer = safe_str(subquestion_1_answer)
    subquestion_2_text = safe_str(subquestion_2_text)
    subquestion_2_answer = safe_str(subquestion_2_answer)
    subquestion_3_text = safe_str(subquestion_3_text)
    subquestion_3_answer = safe_str(subquestion_3_answer)
    subquestion_4_text = safe_str(subquestion_4_text)
    subquestion_4_answer = safe_str(subquestion_4_answer)
    subquestion_5_text = safe_str(subquestion_5_text)
    subquestion_5_answer = safe_str(subquestion_5_answer)
    question = safe_str(question)
    final_answer = safe_str(final_answer)
    rationale_text = safe_str(rationale_text)

    # Collect image-like fields so we can process them in one loop
    all_images = [
        ("question_image_1", image1),
        ("question_image_2", image2),
        ("question_image_3", image3),
        ("question_image_4", image4),
        ("rationale_image_1", rationale_image1),
        ("rationale_image_2", rationale_image2),
    ]

    # If updating, load existing images that haven't been replaced
    if existing_id:
        json_path = os.path.join(parent_data_folder, existing_id, "question.json")
        if os.path.exists(json_path):
            try:
                with open(json_path, "r", encoding="utf-8") as f:
                    existing_data = json.loads(f.read().strip())
                    existing_question_images = existing_data.get("question_images", [])
                    existing_rationale_images = existing_data.get(
                        "rationale_images", []
                    )

                    # Keep existing images if no new ones provided
                    if not image1 and existing_question_images:
                        all_images[0] = (
                            "question_image_1",
                            existing_question_images[0],
                        )
                    if not image2 and len(existing_question_images) > 1:
                        all_images[1] = (
                            "question_image_2",
                            existing_question_images[1],
                        )
                    if not image3 and len(existing_question_images) > 2:
                        all_images[2] = (
                            "question_image_3",
                            existing_question_images[2],
                        )
                    if not image4 and len(existing_question_images) > 3:
                        all_images[3] = (
                            "question_image_4",
                            existing_question_images[3],
                        )
                    if not rationale_image1 and existing_rationale_images:
                        all_images[4] = (
                            "rationale_image_1",
                            existing_rationale_images[0],
                        )
                    if not rationale_image2 and len(existing_rationale_images) > 1:
                        all_images[5] = (
                            "rationale_image_2",
                            existing_rationale_images[1],
                        )
            except:
                pass

    files_list = []
    for idx, (img_label, img_obj) in enumerate(all_images):
        if img_obj is not None:
            temp_path = os.path.join(request_folder, f"{img_label}.png")
            if isinstance(img_obj, str):
                # If image is a file path
                if os.path.exists(img_obj):
                    if (
                        img_obj != temp_path
                    ):  # Only copy if source and destination are different
                        shutil.copy2(img_obj, temp_path)
                    files_list.append((img_label, temp_path))
            else:
                # If image is a numpy array
                gr.processing_utils.save_image(img_obj, temp_path)
                files_list.append((img_label, temp_path))

    # Build user content in two flavors: local file paths vs base64
    # We'll store text fields as simple dictionaries, and then images separately.
    content_list_urls = [
        {"type": "field", "label": "name", "value": name},
        {"type": "field", "label": "email_address", "value": email_address},
        {"type": "field", "label": "institution", "value": institution},
        {"type": "field", "label": "question_categories", "value": question_categories},
        {"type": "field", "label": "image_attribution", "value": image_attribution},
        {"type": "field", "label": "subquestion_1_text", "value": subquestion_1_text},
        {
            "type": "field",
            "label": "subquestion_1_answer",
            "value": subquestion_1_answer,
        },
        {"type": "field", "label": "subquestion_2_text", "value": subquestion_2_text},
        {
            "type": "field",
            "label": "subquestion_2_answer",
            "value": subquestion_2_answer,
        },
        {"type": "field", "label": "subquestion_3_text", "value": subquestion_3_text},
        {
            "type": "field",
            "label": "subquestion_3_answer",
            "value": subquestion_3_answer,
        },
        {"type": "field", "label": "subquestion_4_text", "value": subquestion_4_text},
        {
            "type": "field",
            "label": "subquestion_4_answer",
            "value": subquestion_4_answer,
        },
        {"type": "field", "label": "subquestion_5_text", "value": subquestion_5_text},
        {
            "type": "field",
            "label": "subquestion_5_answer",
            "value": subquestion_5_answer,
        },
        {"type": "field", "label": "question", "value": question},
        {"type": "field", "label": "final_answer", "value": final_answer},
        {"type": "field", "label": "rationale_text", "value": rationale_text},
    ]

    # Append image references
    for img_label, file_path in files_list:
        # 1) Local path (URL) version
        rel_path = os.path.join(".", os.path.basename(file_path))
        content_list_urls.append(
            {
                "type": "image_url",
                "label": img_label,
                "image_url": {"url": {"data:image/png;path": rel_path}},
            }
        )

    # Build the final JSON structures for each approach
    # A) URLs JSON
    item_urls = {
        "custom_id": f"question___{request_id}",
        # Metadata at top level
        "author_info": {
            "name": name,
            "email_address": email_address,
            "institution": institution,
        },
        "question_categories": question_categories,
        "image_attribution": image_attribution,
        "question": question,
        "question_images": [
            item["image_url"]["url"]["data:image/png;path"]
            for item in content_list_urls
            if item.get("type") == "image_url"
            and "question_image" in item.get("label", "")
        ],
        "final_answer": final_answer,
        "rationale_text": rationale_text,
        "rationale_images": [
            item["image_url"]["url"]["data:image/png;path"]
            for item in content_list_urls
            if item.get("type") == "image_url"
            and "rationale_image" in item.get("label", "")
        ],
        "subquestions_1_text": subquestion_1_text,
        "subquestions_1_answer": subquestion_1_answer,
        "subquestions_2_text": subquestion_2_text,
        "subquestions_2_answer": subquestion_2_answer,
        "subquestions_3_text": subquestion_3_text,
        "subquestions_3_answer": subquestion_3_answer,
        "subquestions_4_text": subquestion_4_text,
        "subquestions_4_answer": subquestion_4_answer,
        "subquestions_5_text": subquestion_5_text,
        "subquestions_5_answer": subquestion_5_answer,
    }

    # Convert each to JSON line format
    urls_json_line = json.dumps(item_urls, ensure_ascii=False)

    # 3) Write out JSON file in request_folder
    urls_jsonl_path = os.path.join(request_folder, "question.json")

    with open(urls_jsonl_path, "w", encoding="utf-8") as f:
        f.write(urls_json_line + "\n")

    return urls_jsonl_path


# Build the Gradio app
with gr.Blocks() as demo:
    gr.Markdown("# BugsBunny Eval Builder")
    # Add a global state variable at the top level
    loaded_question_id = gr.State()

    with gr.Accordion("Instructions", open=True):
        gr.HTML(
            """
            <h3>Instructions:</h3>
            <p>Welcome to the Hugging Face space for collecting questions for the BugsBunny benchmark.</p>
            TBA
            """
        )
    gr.Markdown("## Author Information")
    with gr.Row():
        name_input = gr.Textbox(label="Name", lines=1)
        email_address_input = gr.Textbox(label="Email Address", lines=1)
        institution_input = gr.Textbox(
            label="Institution or 'Independent'",
            lines=1,
            placeholder="e.g. MIT, Google, Independent, etc.",
        )

    gr.Markdown("## Question Information")

    # image
    gr.Markdown("### Images Attribution")
    image_attribution_input = gr.Textbox(
        label="Images Attribution",
        lines=1,
        placeholder="Include attribution information for the images used in this question (or 'Own' if you created/took them)",
    )

    # Question Images - Individual Tabs
    with gr.Tabs():
        with gr.Tab("Image 1"):
            image1 = gr.Image(label="Question Image 1", type="filepath")
        with gr.Tab("Image 2 (Optional)"):
            image2 = gr.Image(label="Question Image 2", type="filepath")
        with gr.Tab("Image 3 (Optional)"):
            image3 = gr.Image(label="Question Image 3", type="filepath")
        with gr.Tab("Image 4 (Optional)"):
            image4 = gr.Image(label="Question Image 4", type="filepath")

    question_input = gr.Textbox(
        label="Question", lines=15, placeholder="Type your question here..."
    )

    question_categories_input = gr.Textbox(
        label="Question Categories",
        lines=1,
        placeholder="Comma-separated tags, e.g. math, geometry",
    )

    # Answer Section
    gr.Markdown("## Answer ")

    final_answer_input = gr.Textbox(
        label="Final Answer",
        lines=1,
        placeholder="Enter the short/concise final answer...",
    )

    rationale_text_input = gr.Textbox(
        label="Rationale Text",
        lines=5,
        placeholder="Enter the reasoning or explanation for the answer...",
    )

    # Rationale Images - Individual Tabs
    with gr.Tabs():
        with gr.Tab("Rationale 1 (Optional)"):
            rationale_image1 = gr.Image(label="Rationale Image 1", type="filepath")
        with gr.Tab("Rationale 2 (Optional)"):
            rationale_image2 = gr.Image(label="Rationale Image 2", type="filepath")

    # Subquestions Section
    gr.Markdown("## Subquestions")
    with gr.Row():
        subquestion_1_text_input = gr.Textbox(
            label="Subquestion 1 Text",
            lines=2,
            placeholder="First sub-question...",
            value="N/A",
        )
        subquestion_1_answer_input = gr.Textbox(
            label="Subquestion 1 Answer",
            lines=2,
            placeholder="Answer to sub-question 1...",
            value="N/A",
        )

    with gr.Row():
        subquestion_2_text_input = gr.Textbox(
            label="Subquestion 2 Text",
            lines=2,
            placeholder="Second sub-question...",
            value="N/A",
        )
        subquestion_2_answer_input = gr.Textbox(
            label="Subquestion 2 Answer",
            lines=2,
            placeholder="Answer to sub-question 2...",
            value="N/A",
        )

    with gr.Row():
        subquestion_3_text_input = gr.Textbox(
            label="Subquestion 3 Text",
            lines=2,
            placeholder="Third sub-question...",
            value="N/A",
        )
        subquestion_3_answer_input = gr.Textbox(
            label="Subquestion 3 Answer",
            lines=2,
            placeholder="Answer to sub-question 3...",
            value="N/A",
        )

    with gr.Row():
        subquestion_4_text_input = gr.Textbox(
            label="Subquestion 4 Text",
            lines=2,
            placeholder="Fourth sub-question...",
            value="N/A",
        )
        subquestion_4_answer_input = gr.Textbox(
            label="Subquestion 4 Answer",
            lines=2,
            placeholder="Answer to sub-question 4...",
            value="N/A",
        )

    with gr.Row():
        subquestion_5_text_input = gr.Textbox(
            label="Subquestion 5 Text",
            lines=2,
            placeholder="Fifth sub-question...",
            value="N/A",
        )
        subquestion_5_answer_input = gr.Textbox(
            label="Subquestion 5 Answer",
            lines=2,
            placeholder="Answer to sub-question 5...",
            value="N/A",
        )

    with gr.Row():
        submit_button = gr.Button("Submit")
        clear_button = gr.Button("Clear Form")

    with gr.Row():
        output_file_urls = gr.File(
            label="Download URLs JSON", interactive=False, visible=False
        )
        output_file_base64 = gr.File(
            label="Download Base64 JSON", interactive=False, visible=False
        )

    with gr.Accordion("Load Existing Question", open=False):
        gr.Markdown("## Load Existing Question")

        with gr.Row():
            existing_questions = gr.Dropdown(
                label="Load Existing Question",
                choices=load_existing_questions(),
                type="value",
                allow_custom_value=False,
            )
            refresh_button = gr.Button("πŸ”„ Refresh")
            load_button = gr.Button("Load Selected Question")

    def refresh_questions():
        return gr.Dropdown(choices=load_existing_questions())

    refresh_button.click(fn=refresh_questions, inputs=[], outputs=[existing_questions])

    # Load button functionality
    load_button.click(
        fn=load_question_data,
        inputs=[existing_questions],
        outputs=[
            name_input,
            email_address_input,
            institution_input,
            question_categories_input,
            subquestion_1_text_input,
            subquestion_1_answer_input,
            subquestion_2_text_input,
            subquestion_2_answer_input,
            subquestion_3_text_input,
            subquestion_3_answer_input,
            subquestion_4_text_input,
            subquestion_4_answer_input,
            subquestion_5_text_input,
            subquestion_5_answer_input,
            question_input,
            final_answer_input,
            rationale_text_input,
            image_attribution_input,
            image1,
            image2,
            image3,
            image4,
            rationale_image1,
            rationale_image2,
            loaded_question_id,
        ],
    )

    # Modify validate_and_generate to handle updates
    def validate_and_generate(
        nm,
        em,
        inst,
        qcats,
        sq1t,
        sq1a,
        sq2t,
        sq2a,
        sq3t,
        sq3a,
        sq4t,
        sq4a,
        sq5t,
        sq5a,
        q,
        fa,
        rt,
        ia,
        i1,
        i2,
        i3,
        i4,
        ri1,
        ri2,
        stored_question_id,  # Add this parameter
    ):
        # Validation code remains the same
        missing_fields = []
        if not nm or not nm.strip():
            missing_fields.append("Name")
        if not em or not em.strip():
            missing_fields.append("Email Address")
        if not inst or not inst.strip():
            missing_fields.append("Institution")
        if not q or not q.strip():
            missing_fields.append("Question")
        if not fa or not fa.strip():
            missing_fields.append("Final Answer")
        if not i1:
            missing_fields.append("First Question Image")
        if not ia or not ia.strip():
            missing_fields.append("Image Attribution")
        if not sq1t or not sq1t.strip() or not sq1a or not sq1a.strip():
            missing_fields.append("First Sub-question and Answer")
        if not sq2t or not sq2t.strip() or not sq2a or not sq2a.strip():
            missing_fields.append("Second Sub-question and Answer")
        if not sq3t or not sq3t.strip() or not sq3a or not sq3a.strip():
            missing_fields.append("Third Sub-question and Answer")
        if not sq4t or not sq4t.strip() or not sq4a or not sq4a.strip():
            missing_fields.append("Fourth Sub-question and Answer")
        if not sq5t or not sq5t.strip() or not sq5a or not sq5a.strip():
            missing_fields.append("Fifth Sub-question and Answer")

        if missing_fields:
            warning_msg = f"Required fields missing: {', '.join(missing_fields)} ⛔️"
            gr.Warning(warning_msg, duration=5)
            return gr.Button(interactive=True), gr.Dropdown(
                choices=load_existing_questions()
            )

        # Use the stored ID instead of extracting from dropdown
        existing_id = stored_question_id if stored_question_id else None

        results = generate_json_files(
            nm,
            em,
            inst,
            qcats,
            sq1t,
            sq1a,
            sq2t,
            sq2a,
            sq3t,
            sq3a,
            sq4t,
            sq4a,
            sq5t,
            sq5a,
            q,
            fa,
            rt,
            ia,
            i1,
            i2,
            i3,
            i4,
            ri1,
            ri2,
            existing_id,
        )

        action = "updated" if existing_id else "created"
        gr.Info(
            f"Dataset item {action} successfully! πŸŽ‰ Clear the form to submit a new one"
        )

        return gr.update(interactive=False), gr.Dropdown(
            choices=load_existing_questions()
        )

    # Update submit button click handler to match inputs/outputs correctly
    submit_button.click(
        fn=validate_and_generate,
        inputs=[
            name_input,
            email_address_input,
            institution_input,
            question_categories_input,
            subquestion_1_text_input,
            subquestion_1_answer_input,
            subquestion_2_text_input,
            subquestion_2_answer_input,
            subquestion_3_text_input,
            subquestion_3_answer_input,
            subquestion_4_text_input,
            subquestion_4_answer_input,
            subquestion_5_text_input,
            subquestion_5_answer_input,
            question_input,
            final_answer_input,
            rationale_text_input,
            image_attribution_input,
            image1,
            image2,
            image3,
            image4,
            rationale_image1,
            rationale_image2,
            loaded_question_id,
        ],
        outputs=[submit_button, existing_questions],
    )

    # Fix the clear_form_fields function
    def clear_form_fields(name, email, inst, *args):
        outputs = [
            name,  # Preserve name
            email,  # Preserve email
            inst,  # Preserve institution
            gr.update(value=""),  # Clear question categories
            gr.update(value="N/A"),  # Reset subquestion 1 text to N/A
            gr.update(value="N/A"),  # Reset subquestion 1 answer to N/A
            gr.update(value="N/A"),  # Reset subquestion 2 text to N/A
            gr.update(value="N/A"),  # Reset subquestion 2 answer to N/A
            gr.update(value="N/A"),  # Reset subquestion 3 text to N/A
            gr.update(value="N/A"),  # Reset subquestion 3 answer to N/A
            gr.update(value="N/A"),  # Reset subquestion 4 text to N/A
            gr.update(value="N/A"),  # Reset subquestion 4 answer to N/A
            gr.update(value="N/A"),  # Reset subquestion 5 text to N/A
            gr.update(value="N/A"),  # Reset subquestion 5 answer to N/A
            gr.update(value=""),  # Clear question
            gr.update(value=""),  # Clear final answer
            gr.update(value=""),  # Clear rationale text
            gr.update(value=""),  # Clear image attribution
            None,  # Clear image1
            None,  # Clear image2
            None,  # Clear image3
            None,  # Clear image4
            None,  # Clear rationale image1
            None,  # Clear rationale image2
            None,  # Clear output file urls
            gr.Button(interactive=True),  # Re-enable submit button
            gr.update(choices=load_existing_questions()),  # Update dropdown
            None,  # Changed from gr.State(value=None) to just None
        ]
        gr.Info("Form cleared! Ready for new submission πŸ”„")
        return outputs

    # Update the clear button click handler
    clear_button.click(
        fn=clear_form_fields,
        inputs=[
            name_input,
            email_address_input,
            institution_input,
        ],
        outputs=[
            name_input,
            email_address_input,
            institution_input,
            question_categories_input,
            subquestion_1_text_input,
            subquestion_1_answer_input,
            subquestion_2_text_input,
            subquestion_2_answer_input,
            subquestion_3_text_input,
            subquestion_3_answer_input,
            subquestion_4_text_input,
            subquestion_4_answer_input,
            subquestion_5_text_input,
            subquestion_5_answer_input,
            question_input,
            final_answer_input,
            rationale_text_input,
            image_attribution_input,
            image1,
            image2,
            image3,
            image4,
            rationale_image1,
            rationale_image2,
            output_file_urls,
            submit_button,
            existing_questions,
            loaded_question_id,
        ],
    )


def process_thread():
    while True:
        try:
            process_and_push_dataset(
                "./data",
                "taesiri/BugsBunny-ManualEvaluationSet",
                token=os.environ["HF_TOKEN"],
                private=True,
            )
        except Exception as e:
            print(f"Error in process thread: {e}")
        time.sleep(120)  # Sleep for 2 minutes


if __name__ == "__main__":
    print("Initializing app...")
    sync_with_hub()  # Sync before launching the app
    print("Starting Gradio interface...")

    # Start the processing thread when the app starts
    processing_thread = threading.Thread(target=process_thread, daemon=True)
    processing_thread.start()

    demo.launch()