trading-master / app.py
shaheerawan3's picture
Update app.py
b64d6f6 verified
import streamlit as st
from datetime import date, datetime, timedelta
import yfinance as yf
import pandas as pd
import numpy as np
from prophet import Prophet
from prophet.plot import plot_plotly
import plotly.graph_objects as go
from sklearn.metrics import mean_absolute_error, mean_squared_error
import plotly.express as px
# Configure Streamlit page settings
st.set_page_config(
page_title="Stock & Crypto Forecast",
page_icon="๐Ÿ“ˆ",
layout="wide"
)
# Constants
START = "2015-01-01"
TODAY = date.today().strftime("%Y-%m-%d")
# Asset categories
ASSETS = {
'Stocks': ['GOOG', 'AAPL', 'MSFT', 'GME'],
'Cryptocurrencies': ['BTC-USD', 'ETH-USD', 'DOGE-USD', 'ADA-USD']
}
# Custom CSS
st.markdown("""
<style>
.stButton>button {
width: 100%;
}
.reportview-container {
background: #f0f2f6
}
.custom-date {
margin-top: 1rem;
padding: 1rem;
background-color: #f8f9fa;
border-radius: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
@st.cache_data(ttl=3600)
def load_data(ticker):
"""Load and validate financial data."""
try:
data = yf.download(ticker, START, TODAY)
if data.empty:
raise ValueError(f"No data found for {ticker}")
data.reset_index(inplace=True)
required_columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume']
for col in required_columns:
if col not in data.columns:
raise ValueError(f"Missing required column: {col}")
if col != 'Date':
data[col] = pd.to_numeric(data[col], errors='coerce')
data.dropna(inplace=True)
return data
except Exception as e:
st.error(f"Error loading data: {str(e)}")
return None
def calculate_rsi(prices, period=14):
"""Calculate Relative Strength Index."""
delta = prices.diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
return 100 - (100 / (1 + rs))
def prepare_prophet_data(data):
"""Prepare data for Prophet model."""
df_prophet = data[['Date', 'Close']].copy()
df_prophet.columns = ['ds', 'y']
return df_prophet
def train_prophet_model(data, period):
"""Train and return Prophet model with customized parameters."""
model = Prophet(
yearly_seasonality=True,
weekly_seasonality=True,
daily_seasonality=True,
changepoint_prior_scale=0.05,
seasonality_prior_scale=10.0,
changepoint_range=0.9
)
# Add custom seasonalities
model.add_seasonality(
name='monthly',
period=30.5,
fourier_order=5
)
model.fit(data)
future = model.make_future_dataframe(periods=period)
return model, future
def plot_technical_analysis(data, selected_asset):
"""Create technical analysis plot."""
fig = go.Figure()
fig.add_trace(go.Candlestick(
x=data['Date'],
open=data['Open'],
high=data['High'],
low=data['Low'],
close=data['Close'],
name='Price'
))
fig.add_trace(go.Scatter(
x=data['Date'],
y=data['SMA_20'],
name='SMA 20',
line=dict(color='orange')
))
fig.add_trace(go.Scatter(
x=data['Date'],
y=data['SMA_50'],
name='SMA 50',
line=dict(color='blue')
))
fig.update_layout(
title=f'{selected_asset} Technical Analysis',
yaxis_title='Price',
template='plotly_dark'
)
return fig
def plot_forecast_components(model, forecast):
"""Create custom forecast components plot."""
fig = go.Figure()
# Trend
fig.add_trace(go.Scatter(
x=forecast['ds'],
y=forecast['trend'],
name='Trend',
line=dict(color='blue')
))
# Yearly seasonality
if 'yearly' in forecast.columns:
fig.add_trace(go.Scatter(
x=forecast['ds'],
y=forecast['yearly'],
name='Yearly Seasonality',
line=dict(color='green')
))
# Weekly seasonality
if 'weekly' in forecast.columns:
fig.add_trace(go.Scatter(
x=forecast['ds'],
y=forecast['weekly'],
name='Weekly Seasonality',
line=dict(color='red')
))
fig.update_layout(
title='Forecast Components',
template='plotly_dark',
height=800,
showlegend=True
)
return fig
@st.cache_data
def convert_df_to_csv(df):
"""Convert dataframe to CSV for download."""
return df.to_csv(index=False).encode('utf-8')
def get_specific_date_prediction(model, date_input, forecast):
"""Get prediction for a specific date."""
try:
date_prediction = forecast[forecast['ds'] == pd.to_datetime(date_input)].iloc[0]
return {
'Predicted Value': f"${date_prediction['yhat']:.2f}",
'Lower Bound': f"${date_prediction['yhat_lower']:.2f}",
'Upper Bound': f"${date_prediction['yhat_upper']:.2f}",
'Trend': f"${date_prediction['trend']:.2f}"
}
except IndexError:
return None
def main():
st.title('๐Ÿ“ˆ Advanced Stock & Cryptocurrency Forecast')
# Search bar for assets
search_term = st.text_input('๐Ÿ” Search for assets (e.g., "AAPL" for Apple Inc.)', '')
# Filter assets based on search
filtered_assets = {
category: [asset for asset in assets
if search_term.upper() in asset.upper()]
for category, assets in ASSETS.items()
}
# Sidebar configuration
st.sidebar.title("โš™๏ธ Configuration")
asset_type = st.sidebar.radio("Select Asset Type", list(filtered_assets.keys()))
selected_asset = st.sidebar.selectbox('Select Asset', filtered_assets[asset_type])
# Main content layout
col1, col2 = st.columns(2)
with col1:
n_years = st.slider('Forecast Period (Years):', 1, 4)
with col2:
confidence_level = st.slider('Confidence Level:', 0.8, 0.99, 0.95)
period = n_years * 365
# Date-specific prediction section
st.subheader('๐ŸŽฏ Get Prediction for Specific Date')
prediction_date = st.date_input(
"Select a date for prediction",
min_value=date.today(),
max_value=date.today() + timedelta(days=period),
value=date.today() + timedelta(days=30)
)
# Load and process data
with st.spinner('Loading data...'):
data = load_data(selected_asset)
if data is not None:
# Calculate technical indicators
data['SMA_20'] = data['Close'].rolling(window=20).mean()
data['SMA_50'] = data['Close'].rolling(window=50).mean()
data['RSI'] = calculate_rsi(data['Close'])
# Display technical analysis
st.subheader('๐Ÿ“Š Technical Analysis')
fig_technical = plot_technical_analysis(data, selected_asset)
st.plotly_chart(fig_technical, use_container_width=True)
# Prepare and train Prophet model
df_prophet = prepare_prophet_data(data)
try:
model, future = train_prophet_model(df_prophet, period)
forecast = model.predict(future)
# Get specific date prediction
specific_prediction = get_specific_date_prediction(
model,
prediction_date,
forecast
)
if specific_prediction:
st.subheader(f"Prediction for {prediction_date}")
cols = st.columns(4)
for i, (metric, value) in enumerate(specific_prediction.items()):
cols[i].metric(metric, value)
# Calculate metrics
historical_predictions = forecast[forecast['ds'].isin(df_prophet['ds'])]
mae = mean_absolute_error(df_prophet['y'], historical_predictions['yhat'])
rmse = np.sqrt(mean_squared_error(df_prophet['y'], historical_predictions['yhat']))
mape = np.mean(np.abs((df_prophet['y'] - historical_predictions['yhat']) / df_prophet['y'])) * 100
# Display metrics
st.subheader('๐Ÿ“‰ Model Performance Metrics')
col1, col2, col3 = st.columns(3)
col1.metric("MAE", f"${mae:.2f}")
col2.metric("RMSE", f"${rmse:.2f}")
col3.metric("MAPE", f"{mape:.2f}%")
# Display forecast
st.subheader('๐Ÿ”ฎ Price Forecast')
fig_forecast = plot_plotly(model, forecast)
fig_forecast.update_layout(template='plotly_dark')
st.plotly_chart(fig_forecast, use_container_width=True)
# Display components using custom plotting function
st.subheader("๐Ÿ“Š Forecast Components")
fig_components = plot_forecast_components(model, forecast)
st.plotly_chart(fig_components, use_container_width=True)
# Add download button
csv = convert_df_to_csv(forecast)
st.download_button(
label="Download Forecast Data",
data=csv,
file_name=f'{selected_asset}_forecast.csv',
mime='text/csv'
)
except Exception as e:
st.error(f"Error in prediction: {str(e)}")
st.exception(e)
if __name__ == "__main__":
main()