backend-app / app /main.py
sahanes's picture
Update app/main.py
7aa2677 verified
from fastapi import FastAPI, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import PyPDF2
import openai
import numpy as np
import faiss
import tiktoken
from typing import List
import io
from dotenv import load_dotenv
import os
import logging
app = FastAPI()
# Add CORS middleware
# app.add_middleware(
# CORSMiddleware,
# # allow_origins=["*"],
# # allow_origins=["https://jubilant-barnacle.vercel.app"],
# # allow_origins=["https://jubilant-barnacle-r95p.vercel.app", "http://localhost:3000"],
# # allow_origins=["https://jubilant-barnacle-r95p.vercel.app", "http://localhost:3000", "*"],
# # allow_origins=["https://jubilant-barnacle-r95p.vercel.app", "http://localhost:3000"],
# # allow_origins=[
# # "https://jubilant-barnacle-u2ap.vercel.app", # Your Vercel domain
# # "http://localhost:3000", # For local development
# # ],
# allow_origins=[
# "http://localhost:3000", # my local frontend
# "http://localhost:3001", # my local frontend
# "http://10.220.1.20:3000"
# "http://10.220.1.20:3001" # my IP address
# ],
# allow_credentials=True,
# allow_methods=["*"],
# allow_headers=["*"],
# )
# Updated CORS middleware to include all your frontend URLs
# app.add_middleware(
# CORSMiddleware,
# allow_origins=[
# "http://localhost:3000",
# "http://localhost:3001",
# "http://10.220.1.20:3000",
# "http://10.220.1.20:3001" # Adding your specific IP and port
# ],
# allow_credentials=True,
# allow_methods=["*"],
# allow_headers=["*"],
# )
# # Create uploads directory
# os.makedirs("uploads", exist_ok=True)
# @app.get("/health")
# async def health_check():
# logger.info("Health check endpoint called")
# return {"status": "healthy"}
# # In-memory storage
# @app.post("/upload")
# async def upload_file(file: UploadFile = File(...)):
# try:
# logger.info(f"Receiving file: {file.filename}")
# # Save the file
# file_path = os.path.join("uploads", file.filename)
# with open(file_path, "wb") as buffer:
# content = await file.read()
# buffer.write(content)
# logger.info(f"File saved successfully at {file_path}")
# return {
# "message": "File uploaded successfully",
# "filename": file.filename,
# "status": "success"
# }
# except Exception as e:
# logger.error(f"Upload failed: {str(e)}")
# raise HTTPException(status_code=500, detail=str(e))
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=[
"http://localhost:3000",
# "http://localhost:3001",
# "http://10.220.1.20:3000",
# "http://10.220.1.20:3001",
# "http://localhost:8000",
# " http://10.250.13.239:8000",
"https://jubilant-barnacle-u2ap.vercel.app", # main domain
#"jubilant-barnacle-u2ap-czfa44ae5-sahar-nesaeis-projects.vercel.app",
"https://jubilant-barnacle-x2p8.vercel.app"
],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/health")
async def health_check():
logger.info("Health check endpoint called")
return {"status": "healthy"}
@app.post("/upload")
async def upload_pdf(file: UploadFile):
logger.info(f"Receiving file: {file.filename}")
if not file.filename.endswith('.pdf'):
logger.error("File type error: not a PDF")
raise HTTPException(status_code=400, detail="File must be a PDF")
try:
# Read content directly from the uploaded file
content = await file.read()
# Reset the document store
doc_store.reset()
# Process PDF content
pdf_reader = PyPDF2.PdfReader(io.BytesIO(content))
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
# Chunk the text
chunks = chunk_text(text)
doc_store.documents = chunks
# Create embeddings
logger.info("Creating embeddings...")
embeddings = [get_embedding(chunk) for chunk in chunks]
doc_store.embeddings = np.array(embeddings, dtype=np.float32)
# Create FAISS index
logger.info("Creating FAISS index...")
dimension = len(embeddings[0])
doc_store.index = faiss.IndexFlatL2(dimension)
doc_store.index.add(doc_store.embeddings)
logger.info(f"PDF processed successfully with {len(chunks)} chunks")
return {
"message": "PDF processed successfully",
"filename": file.filename,
"chunks": len(chunks),
"status": "success"
}
except Exception as e:
logger.error(f"Upload and processing failed: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
class DocumentStore:
def __init__(self):
self.documents: List[str] = []
self.embeddings = None
self.index = None
def reset(self):
self.documents = []
self.embeddings = None
self.index = None
doc_store = DocumentStore()
class Question(BaseModel):
text: str
def get_embedding(text: str) -> List[float]:
response = openai.embeddings.create(
model="text-embedding-3-small",
input=text
)
return response.data[0].embedding
def chunk_text(text: str, chunk_size: int = 1000) -> List[str]:
words = text.split()
chunks = []
current_chunk = []
current_size = 0
for word in words:
current_chunk.append(word)
current_size += len(word) + 1
if current_size >= chunk_size:
chunks.append(" ".join(current_chunk))
current_chunk = []
current_size = 0
if current_chunk:
chunks.append(" ".join(current_chunk))
return chunks
@app.get("/test")
async def test():
return {"message": "Backend is working"}
@app.post("/upload")
async def upload_pdf(file: UploadFile):
if not file.filename.endswith('.pdf'):
raise HTTPException(status_code=400, detail="File must be a PDF")
try:
# Reset the document store
doc_store.reset()
# Read PDF content
content = await file.read()
pdf_reader = PyPDF2.PdfReader(io.BytesIO(content))
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
# Chunk the text
chunks = chunk_text(text)
doc_store.documents = chunks
# Create embeddings
embeddings = [get_embedding(chunk) for chunk in chunks]
doc_store.embeddings = np.array(embeddings, dtype=np.float32)
# Create FAISS index
dimension = len(embeddings[0])
doc_store.index = faiss.IndexFlatL2(dimension)
doc_store.index.add(doc_store.embeddings)
return {"message": "PDF processed successfully", "chunks": len(chunks)}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/ask")
async def ask_question(question: Question):
if not doc_store.index:
raise HTTPException(
status_code=400, detail="No document has been uploaded yet")
try:
# Get question embedding
question_embedding = get_embedding(question.text)
# Search similar chunks
k = 10 # Number of relevant chunks to retrieve
D, I = doc_store.index.search(
np.array([question_embedding], dtype=np.float32), k)
# Get relevant chunks
relevant_chunks = [doc_store.documents[i] for i in I[0]]
print(relevant_chunks)
# Create prompt
prompt = f"""Based on the following context, please answer the question.
If the answer cannot be found in the context, say "I cannot find the answer in the document." You may also use the context to infer information that is not explicitly stated in the context. For example, if the context does not explicitly state what the paper is about, you may infer that the paper is about the topic of the question or the retrieved context.
Context:
{' '.join(relevant_chunks)}
Question: {question.text}
"""
# Get response from OpenAI
response = openai.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a helpful assistant that answers questions based on the provided context."},
{"role": "user", "content": prompt}
]
)
return {"answer": response.choices[0].message.content}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Configure OpenAI API key
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
if __name__ == "__main__":
import uvicorn
uvicorn.run(
"main:app",
host="0.0.0.0",
port=8000,
reload=True,
log_level="info",
workers=1)