Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
import spaces
|
5 |
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
|
6 |
import torch
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl"
|
10 |
|
11 |
if torch.cuda.is_available():
|
12 |
torch_dtype = torch.float16
|
@@ -20,24 +20,28 @@ pipe = pipe.to(device)
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
-
@spaces.GPU
|
24 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
|
|
25 |
|
26 |
if randomize_seed:
|
27 |
seed = random.randint(0, MAX_SEED)
|
28 |
-
|
29 |
generator = torch.Generator().manual_seed(seed)
|
30 |
-
|
31 |
image = pipe(
|
32 |
-
prompt
|
33 |
-
negative_prompt
|
34 |
-
guidance_scale
|
35 |
-
num_inference_steps
|
36 |
-
width
|
37 |
-
height
|
38 |
-
generator
|
39 |
-
).images[0]
|
40 |
-
|
41 |
return image, seed
|
42 |
|
43 |
examples = [
|
@@ -46,22 +50,27 @@ examples = [
|
|
46 |
"A delicious ceviche cheesecake slice",
|
47 |
]
|
48 |
|
49 |
-
css="""
|
50 |
#col-container {
|
51 |
margin: 0 auto;
|
52 |
max-width: 640px;
|
53 |
}
|
54 |
"""
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
with gr.Blocks(css=css) as demo:
|
57 |
-
|
58 |
with gr.Column(elem_id="col-container"):
|
59 |
-
gr.Markdown(
|
60 |
# Text-to-Image Gradio Template
|
61 |
""")
|
62 |
-
|
63 |
with gr.Row():
|
64 |
-
|
65 |
prompt = gr.Text(
|
66 |
label="Prompt",
|
67 |
show_label=False,
|
@@ -69,20 +78,23 @@ with gr.Blocks(css=css) as demo:
|
|
69 |
placeholder="Enter your prompt",
|
70 |
container=False,
|
71 |
)
|
72 |
-
|
73 |
run_button = gr.Button("Run", scale=0)
|
74 |
-
|
75 |
result = gr.Image(label="Result", show_label=False)
|
76 |
|
|
|
|
|
|
|
|
|
77 |
with gr.Accordion("Advanced Settings", open=False):
|
78 |
-
|
79 |
negative_prompt = gr.Text(
|
80 |
label="Negative prompt",
|
81 |
max_lines=1,
|
82 |
placeholder="Enter a negative prompt",
|
83 |
visible=False,
|
84 |
)
|
85 |
-
|
86 |
seed = gr.Slider(
|
87 |
label="Seed",
|
88 |
minimum=0,
|
@@ -90,54 +102,52 @@ with gr.Blocks(css=css) as demo:
|
|
90 |
step=1,
|
91 |
value=0,
|
92 |
)
|
93 |
-
|
94 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
95 |
-
|
96 |
with gr.Row():
|
97 |
-
|
98 |
width = gr.Slider(
|
99 |
label="Width",
|
100 |
minimum=256,
|
101 |
maximum=MAX_IMAGE_SIZE,
|
102 |
step=32,
|
103 |
-
value=1024,
|
104 |
)
|
105 |
-
|
106 |
height = gr.Slider(
|
107 |
label="Height",
|
108 |
minimum=256,
|
109 |
maximum=MAX_IMAGE_SIZE,
|
110 |
step=32,
|
111 |
-
value=1024,
|
112 |
)
|
113 |
-
|
114 |
with gr.Row():
|
115 |
-
|
116 |
guidance_scale = gr.Slider(
|
117 |
label="Guidance scale",
|
118 |
minimum=0.0,
|
119 |
maximum=10.0,
|
120 |
step=0.1,
|
121 |
-
value=7,
|
122 |
)
|
123 |
-
|
124 |
num_inference_steps = gr.Slider(
|
125 |
label="Number of inference steps",
|
126 |
minimum=1,
|
127 |
maximum=50,
|
128 |
step=1,
|
129 |
-
value=35,
|
130 |
)
|
131 |
-
|
132 |
gr.Examples(
|
133 |
-
examples
|
134 |
-
inputs
|
135 |
)
|
136 |
gr.on(
|
137 |
triggers=[run_button.click, prompt.submit],
|
138 |
-
fn
|
139 |
-
inputs
|
140 |
-
outputs
|
141 |
)
|
142 |
|
143 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import spaces # [uncomment to use ZeroGPU]
|
5 |
from diffusers import DiffusionPipeline, DPMSolverSDEScheduler
|
6 |
import torch
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" # Replace to the model you would like to use
|
10 |
|
11 |
if torch.cuda.is_available():
|
12 |
torch_dtype = torch.float16
|
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
+
@spaces.GPU # [uncomment to use ZeroGPU]
|
24 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection, progress=gr.Progress(track_tqdm=True)):
|
25 |
+
|
26 |
+
# Combine selected tags with the user input prompt
|
27 |
+
tags_text = ', '.join(tag_selection)
|
28 |
+
final_prompt = f'score_9, score_8_up, score_7_up,source_anime, {tags_text}, {prompt}'
|
29 |
|
30 |
if randomize_seed:
|
31 |
seed = random.randint(0, MAX_SEED)
|
32 |
+
|
33 |
generator = torch.Generator().manual_seed(seed)
|
34 |
+
|
35 |
image = pipe(
|
36 |
+
prompt=final_prompt,
|
37 |
+
negative_prompt='worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark, ' + negative_prompt,
|
38 |
+
guidance_scale=guidance_scale,
|
39 |
+
num_inference_steps=num_inference_steps,
|
40 |
+
width=width,
|
41 |
+
height=height,
|
42 |
+
generator=generator
|
43 |
+
).images[0]
|
44 |
+
|
45 |
return image, seed
|
46 |
|
47 |
examples = [
|
|
|
50 |
"A delicious ceviche cheesecake slice",
|
51 |
]
|
52 |
|
53 |
+
css = """
|
54 |
#col-container {
|
55 |
margin: 0 auto;
|
56 |
max-width: 640px;
|
57 |
}
|
58 |
"""
|
59 |
|
60 |
+
# Define a list of example tags
|
61 |
+
tag_options = [
|
62 |
+
"fantasy", "sci-fi", "realistic", "cyberpunk", "noir", "surreal",
|
63 |
+
"colorful", "detailed", "high resolution", "anime style"
|
64 |
+
]
|
65 |
+
|
66 |
with gr.Blocks(css=css) as demo:
|
67 |
+
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
+
gr.Markdown("""
|
70 |
# Text-to-Image Gradio Template
|
71 |
""")
|
72 |
+
|
73 |
with gr.Row():
|
|
|
74 |
prompt = gr.Text(
|
75 |
label="Prompt",
|
76 |
show_label=False,
|
|
|
78 |
placeholder="Enter your prompt",
|
79 |
container=False,
|
80 |
)
|
81 |
+
|
82 |
run_button = gr.Button("Run", scale=0)
|
83 |
+
|
84 |
result = gr.Image(label="Result", show_label=False)
|
85 |
|
86 |
+
with gr.Row():
|
87 |
+
# Checkbox group for selectable tags
|
88 |
+
tag_selection = gr.CheckboxGroup(choices=tag_options, label="Select Tags")
|
89 |
+
|
90 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
91 |
negative_prompt = gr.Text(
|
92 |
label="Negative prompt",
|
93 |
max_lines=1,
|
94 |
placeholder="Enter a negative prompt",
|
95 |
visible=False,
|
96 |
)
|
97 |
+
|
98 |
seed = gr.Slider(
|
99 |
label="Seed",
|
100 |
minimum=0,
|
|
|
102 |
step=1,
|
103 |
value=0,
|
104 |
)
|
105 |
+
|
106 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
107 |
+
|
108 |
with gr.Row():
|
|
|
109 |
width = gr.Slider(
|
110 |
label="Width",
|
111 |
minimum=256,
|
112 |
maximum=MAX_IMAGE_SIZE,
|
113 |
step=32,
|
114 |
+
value=1024, # Replace with defaults that work for your model
|
115 |
)
|
116 |
+
|
117 |
height = gr.Slider(
|
118 |
label="Height",
|
119 |
minimum=256,
|
120 |
maximum=MAX_IMAGE_SIZE,
|
121 |
step=32,
|
122 |
+
value=1024, # Replace with defaults that work for your model
|
123 |
)
|
124 |
+
|
125 |
with gr.Row():
|
|
|
126 |
guidance_scale = gr.Slider(
|
127 |
label="Guidance scale",
|
128 |
minimum=0.0,
|
129 |
maximum=10.0,
|
130 |
step=0.1,
|
131 |
+
value=7, # Replace with defaults that work for your model
|
132 |
)
|
133 |
+
|
134 |
num_inference_steps = gr.Slider(
|
135 |
label="Number of inference steps",
|
136 |
minimum=1,
|
137 |
maximum=50,
|
138 |
step=1,
|
139 |
+
value=35, # Replace with defaults that work for your model
|
140 |
)
|
141 |
+
|
142 |
gr.Examples(
|
143 |
+
examples=examples,
|
144 |
+
inputs=[prompt]
|
145 |
)
|
146 |
gr.on(
|
147 |
triggers=[run_button.click, prompt.submit],
|
148 |
+
fn=infer,
|
149 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, tag_selection],
|
150 |
+
outputs=[result, seed]
|
151 |
)
|
152 |
|
153 |
+
demo.queue().launch()
|