Spaces:
Runtime error
Runtime error
File size: 11,917 Bytes
ef7b543 73d81d6 ef7b543 73d81d6 ef7b543 73d81d6 ef7b543 b0d726a ef7b543 3037830 ef7b543 3037830 ef7b543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import os
import sys
sys.path.append(os.getcwd())
sys.path.append(os.path.join(os.getcwd(), "annotator/entityseg"))
import cv2
import spaces
import einops
import torch
import gradio as gr
import numpy as np
from pytorch_lightning import seed_everything
from PIL import Image
from annotator.util import resize_image, HWC3
from annotator.canny import CannyDetector
from annotator.midas import MidasDetector
from annotator.entityseg import EntitysegDetector
from annotator.openpose import OpenposeDetector
from annotator.content import ContentDetector
from annotator.cielab import CIELabDetector
from models.util import create_model, load_state_dict
from models.ddim_hacked import DDIMSampler
'''
define conditions
'''
max_conditions = 8
condition_types = ["edge", "depth", "seg", "pose", "content", "color"]
apply_canny = CannyDetector()
apply_midas = MidasDetector()
apply_seg = EntitysegDetector()
apply_openpose = OpenposeDetector()
apply_content = ContentDetector()
apply_color = CIELabDetector()
processors = {
"edge": apply_canny,
"depth": apply_midas,
"seg": apply_seg,
"pose": apply_openpose,
"content": apply_content,
"color": apply_color,
}
descriptors = {
"edge": "canny",
"depth": "depth",
"seg": "segmentation",
"pose": "openpose",
}
@torch.no_grad()
def get_unconditional_global(c_global):
if isinstance(c_global, dict):
return {k:torch.zeros_like(v) for k,v in c_global.items()}
elif isinstance(c_global, list):
return [torch.zeros_like(c) for c in c_global]
else:
return torch.zeros_like(c_global)
@spaces.GPU(duration=120)
def process(prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps,
strength, scale, seed, eta, global_strength, color_strength, local_strength, *args):
seed_everything(seed)
conds_and_types = args
conds = conds_and_types[0::2]
types = conds_and_types[1::2]
conds = [c for c in conds if c is not None]
types = [t for t in types if t is not None]
assert len(conds) == len(types)
detected_maps = []
other_maps = []
tasks = []
# initialize global control
global_conditions = dict(clipembedding=np.zeros((1, 768), dtype=np.float32), color=np.zeros((1, 180), dtype=np.float32))
global_control = {}
for key in global_conditions.keys():
global_cond = torch.from_numpy(global_conditions[key]).unsqueeze(0).repeat(num_samples, 1, 1)
global_cond = global_cond.cuda().to(memory_format=torch.contiguous_format).float()
global_control[key] = global_cond
# initialize local control
anchor_image = HWC3(np.zeros((image_resolution, image_resolution, 3)).astype(np.uint8))
oH, oW = anchor_image.shape[:2]
H, W, C = resize_image(anchor_image, image_resolution).shape
anchor_tensor = ddim_sampler.model.qformer_vis_processor['eval'](Image.fromarray(anchor_image))
local_control = torch.tensor(anchor_tensor).cuda().to(memory_format=torch.contiguous_format).half()
task_prompt = ''
with torch.no_grad():
# set up local control
for cond, typ in zip(conds, types):
if typ in ['edge', 'depth', 'seg', 'pose']:
oH, oW = cond.shape[:2]
cond_image = HWC3(cv2.resize(cond, (W, H)))
cond_detected_map = processors[typ](cond_image)
cond_detected_map = HWC3(cond_detected_map)
detected_maps.append(cond_detected_map)
tasks.append(descriptors[typ])
elif typ in ['content']:
other_maps.append(cond)
content_image = cv2.cvtColor(cond, cv2.COLOR_RGB2BGR)
content_emb = apply_content(content_image)
global_conditions['clipembedding'] = content_emb
elif typ in ['color']:
color_hist = apply_color(cond)
global_conditions['color'] = color_hist
color_palette = apply_color.hist_to_palette(color_hist) # (50, 189, 3)
color_palette = cv2.resize(color_palette, (W, H), cv2.INTER_NEAREST)
other_maps.append(color_palette)
if len(detected_maps) > 0:
local_control = torch.cat([ddim_sampler.model.qformer_vis_processor['eval'](Image.fromarray(img)).cuda().unsqueeze(0) for img in detected_maps], dim=1)
task_prompt = ' conditioned on ' + ' and '.join(tasks)
local_control = local_control.repeat(num_samples, 1, 1, 1)
# set up global control
for key in global_conditions.keys():
global_cond = torch.from_numpy(global_conditions[key]).unsqueeze(0).repeat(num_samples, 1, 1)
global_cond = global_cond.cuda().to(memory_format=torch.contiguous_format).float()
global_control[key] = global_cond
# set up prompt
input_prompt = (prompt + ' ' + task_prompt).strip()
# set up cfg
uc_local_control = local_control
uc_global_control = {k:torch.zeros_like(v) for k,v in global_control.items()}
cond = {
"local_control": [local_control],
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
"global_control": [global_control],
"text": [[input_prompt] * num_samples],
}
un_cond = {
"local_control": [uc_local_control],
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)],
'global_control': [uc_global_control],
"text": [[input_prompt] * num_samples],
}
shape = (4, H // 8, W // 8)
model.control_scales = [strength] * 13
samples, _ = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond,
global_strength=global_strength,
color_strength=color_strength,
local_strength=local_strength)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
results = [cv2.resize(res, (oW, oH)) for res in results]
detected_maps = [cv2.resize(maps, (oW, oH)) for maps in detected_maps]
return [results, detected_maps+other_maps]
def variable_image_outputs(k):
if k is None:
k = 1
k = int(k)
imageboxes = []
for i in range(max_conditions):
if i<k:
with gr.Row(visible=True):
img = gr.Image(sources=['upload'], type="numpy", label=f'Condition {i+1}', visible=True, interactive=True, scale=3, height=200)
typ = gr.Dropdown(condition_types, visible=True, interactive=True, label="type", scale=1)
else:
with gr.Row(visible=False):
img = gr.Image(sources=['upload'], type="numpy", label=f'Condition {i+1}', visible=False, scale=3, height=200)
typ = gr.Dropdown(condition_types, visible=False, interactive=True, label="type", scale=1)
imageboxes.append(img)
imageboxes.append(typ)
return imageboxes
'''
define model
'''
config_file = "configs/anycontrol.yaml"
model_file = "ckpts/anycontrol_15.ckpt"
model = create_model(config_file).cpu()
model.load_state_dict(load_state_dict(model_file, location='cpu'))
model = model.cuda()
ddim_sampler = DDIMSampler(model)
block = gr.Blocks(theme='bethecloud/storj_theme').queue()
with block:
with gr.Row():
gr.Markdown("## AnyControl Demo")
gr.Markdown("---")
with gr.Row():
with gr.Column(scale=1):
with gr.Blocks():
s = gr.Slider(1, max_conditions, value=1, step=1, label="How many conditions to upload:")
imageboxes = []
for i in range(max_conditions):
if i==0:
with gr.Row():
img = gr.Image(visible=True, sources=['upload'], type="numpy", label='Condition 1', interactive=True, scale=3, height=200)
typ = gr.Dropdown(condition_types, visible=True, interactive=True, label="type", scale=1)
else:
with gr.Row():
img = gr.Image(visible=False, sources=['upload'], type="numpy", label=f'Condition {i+1}', scale=3, height=200)
typ = gr.Dropdown(condition_types, visible=False, interactive=True, label="type", scale=1)
imageboxes.append(img)
imageboxes.append(typ)
s.change(variable_image_outputs, s, imageboxes)
with gr.Column(scale=2):
with gr.Row():
prompt = gr.Textbox(label="Prompt")
with gr.Row():
with gr.Column():
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=4, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1, step=0.01)
local_strength = gr.Slider(label="Local Strength", minimum=0, maximum=2, value=1, step=0.01)
global_strength = gr.Slider(label="Global Strength", minimum=0, maximum=2, value=1, step=0.01)
color_strength = gr.Slider(label="Color Strength", minimum=0, maximum=2, value=1, step=0.01)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, value=42, step=1)
eta = gr.Number(label="Eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Row():
run_button = gr.Button(value="Run")
with gr.Row():
image_gallery = gr.Gallery(label='Generation', show_label=True, elem_id="gallery", columns=[4], rows=[1], height='auto', interactive=False)
with gr.Row():
cond_gallery = gr.Gallery(label='Condition', show_label=True, elem_id="gallery", columns=[4], rows=[1], height='auto', interactive=False)
inputs = [prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps,
strength, scale, seed, eta, local_strength, global_strength, color_strength] + imageboxes
run_button.click(fn=process, inputs=inputs, outputs=[image_gallery, cond_gallery])
# uncomment this block in case you need it
# os.environ['http_proxy'] = ''
# os.environ['https_proxy'] = ''
# os.environ['no_proxy'] = 'localhost,127.0.0.0/8,127.0.1.1'
# os.environ['HTTP_PROXY'] = ''
# os.environ['HTTPS_PROXY'] = ''
# os.environ['NO_PROXY'] = 'localhost,127.0.0.0/8,127.0.1.1'
# os.environ['TMPDIR'] = './tmpfiles'
block.launch(server_name='0.0.0.0', allowed_paths=["."], share=False)
|