File size: 11,917 Bytes
ef7b543
 
 
 
 
 
 
 
73d81d6
ef7b543
 
 
73d81d6
ef7b543
 
 
 
 
 
 
73d81d6
ef7b543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0d726a
ef7b543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3037830
 
ef7b543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3037830
ef7b543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import sys
sys.path.append(os.getcwd())
sys.path.append(os.path.join(os.getcwd(), "annotator/entityseg"))
import cv2
import spaces
import einops
import torch
import gradio as gr
import numpy as np
from pytorch_lightning import seed_everything
from PIL import Image

from annotator.util import resize_image, HWC3
from annotator.canny import CannyDetector
from annotator.midas import MidasDetector
from annotator.entityseg import EntitysegDetector
from annotator.openpose import OpenposeDetector
from annotator.content import ContentDetector
from annotator.cielab import CIELabDetector

from models.util import create_model, load_state_dict
from models.ddim_hacked import DDIMSampler

'''
define conditions
'''
max_conditions = 8
condition_types = ["edge", "depth", "seg", "pose", "content", "color"]

apply_canny = CannyDetector()
apply_midas = MidasDetector()
apply_seg = EntitysegDetector()
apply_openpose = OpenposeDetector()
apply_content = ContentDetector()
apply_color = CIELabDetector()

processors = {
    "edge": apply_canny,
    "depth": apply_midas,
    "seg": apply_seg,
    "pose": apply_openpose,
    "content": apply_content,
    "color": apply_color,
}

descriptors = {
    "edge": "canny",
    "depth": "depth",
    "seg": "segmentation",
    "pose": "openpose",
}


@torch.no_grad()
def get_unconditional_global(c_global):
    if isinstance(c_global, dict):
        return {k:torch.zeros_like(v) for k,v in c_global.items()}
    elif isinstance(c_global, list):
        return [torch.zeros_like(c) for c in c_global]
    else:
        return torch.zeros_like(c_global) 


@spaces.GPU(duration=120)
def process(prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, 
            strength, scale, seed, eta, global_strength, color_strength, local_strength, *args):
    
    seed_everything(seed)

    conds_and_types = args
    conds = conds_and_types[0::2]
    types = conds_and_types[1::2]
    conds = [c for c in conds if c is not None]
    types = [t for t in types if t is not None]
    assert len(conds) == len(types)

    detected_maps = []
    other_maps = []
    tasks = []

    # initialize global control
    global_conditions = dict(clipembedding=np.zeros((1, 768), dtype=np.float32), color=np.zeros((1, 180), dtype=np.float32))
    global_control = {}
    for key in global_conditions.keys():
        global_cond = torch.from_numpy(global_conditions[key]).unsqueeze(0).repeat(num_samples, 1, 1)
        global_cond = global_cond.cuda().to(memory_format=torch.contiguous_format).float()
        global_control[key] = global_cond

    # initialize local control
    anchor_image = HWC3(np.zeros((image_resolution, image_resolution, 3)).astype(np.uint8))
    oH, oW = anchor_image.shape[:2]
    H, W, C = resize_image(anchor_image, image_resolution).shape
    anchor_tensor = ddim_sampler.model.qformer_vis_processor['eval'](Image.fromarray(anchor_image))
    local_control = torch.tensor(anchor_tensor).cuda().to(memory_format=torch.contiguous_format).half()

    task_prompt = ''

    with torch.no_grad():

        # set up local control
        for cond, typ in zip(conds, types):
            if typ in ['edge', 'depth', 'seg', 'pose']:
                oH, oW = cond.shape[:2] 
                cond_image = HWC3(cv2.resize(cond, (W, H)))
                cond_detected_map = processors[typ](cond_image)
                cond_detected_map = HWC3(cond_detected_map)
                detected_maps.append(cond_detected_map)
                tasks.append(descriptors[typ])
            elif typ in ['content']:
                other_maps.append(cond)
                content_image = cv2.cvtColor(cond, cv2.COLOR_RGB2BGR)
                content_emb = apply_content(content_image)
                global_conditions['clipembedding'] = content_emb
            elif typ in ['color']:
                color_hist = apply_color(cond)
                global_conditions['color'] = color_hist
                color_palette = apply_color.hist_to_palette(color_hist) # (50, 189, 3)
                color_palette = cv2.resize(color_palette, (W, H), cv2.INTER_NEAREST)
                other_maps.append(color_palette)
        if len(detected_maps) > 0:
            local_control = torch.cat([ddim_sampler.model.qformer_vis_processor['eval'](Image.fromarray(img)).cuda().unsqueeze(0) for img in detected_maps], dim=1)
            task_prompt = ' conditioned on ' + ' and '.join(tasks)
        local_control = local_control.repeat(num_samples, 1, 1, 1)

        # set up global control
        for key in global_conditions.keys():
            global_cond = torch.from_numpy(global_conditions[key]).unsqueeze(0).repeat(num_samples, 1, 1)
            global_cond = global_cond.cuda().to(memory_format=torch.contiguous_format).float()
            global_control[key] = global_cond

        # set up prompt
        input_prompt = (prompt + ' ' + task_prompt).strip()

        # set up cfg
        uc_local_control = local_control
        uc_global_control = {k:torch.zeros_like(v) for k,v in global_control.items()}

        cond = {
            "local_control": [local_control], 
            "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)], 
            "global_control": [global_control],
            "text": [[input_prompt] * num_samples],
        }
        un_cond = {
            "local_control": [uc_local_control], 
            "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)], 
            'global_control': [uc_global_control],
            "text": [[input_prompt] * num_samples],
        }
        shape = (4, H // 8, W // 8)

        model.control_scales = [strength] * 13
        samples, _ = ddim_sampler.sample(ddim_steps, num_samples,
                                                     shape, cond, verbose=False, eta=eta,
                                                     unconditional_guidance_scale=scale,
                                                     unconditional_conditioning=un_cond, 
                                                     global_strength=global_strength, 
                                                     color_strength=color_strength,
                                                     local_strength=local_strength)

        x_samples = model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
        results = [x_samples[i] for i in range(num_samples)]

    results = [cv2.resize(res, (oW, oH)) for res in results]
    detected_maps = [cv2.resize(maps, (oW, oH)) for maps in detected_maps]
    return [results, detected_maps+other_maps]

  
def variable_image_outputs(k):
    if k is None:
        k = 1
    k = int(k)
    imageboxes = []
    for i in range(max_conditions):
        if i<k:
            with gr.Row(visible=True):
                img = gr.Image(sources=['upload'], type="numpy", label=f'Condition {i+1}', visible=True, interactive=True, scale=3, height=200)
                typ = gr.Dropdown(condition_types, visible=True, interactive=True, label="type", scale=1)
        else:
            with gr.Row(visible=False):
                img = gr.Image(sources=['upload'], type="numpy", label=f'Condition {i+1}', visible=False, scale=3, height=200)
                typ = gr.Dropdown(condition_types, visible=False, interactive=True, label="type", scale=1)
        imageboxes.append(img)
        imageboxes.append(typ)
    return imageboxes


'''
define model
'''
config_file = "configs/anycontrol.yaml"
model_file = "ckpts/anycontrol_15.ckpt"
model = create_model(config_file).cpu()
model.load_state_dict(load_state_dict(model_file, location='cpu'))
model = model.cuda()
ddim_sampler = DDIMSampler(model)



block = gr.Blocks(theme='bethecloud/storj_theme').queue()
with block:
    with gr.Row():
        gr.Markdown("## AnyControl Demo")
        gr.Markdown("---")
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Blocks():
                s = gr.Slider(1, max_conditions, value=1, step=1, label="How many conditions to upload:")
                imageboxes = []
                for i in range(max_conditions):
                    if i==0:
                        with gr.Row():
                            img = gr.Image(visible=True, sources=['upload'], type="numpy", label='Condition 1', interactive=True, scale=3, height=200)
                            typ = gr.Dropdown(condition_types, visible=True, interactive=True, label="type", scale=1)
                    else:
                        with gr.Row():
                            img = gr.Image(visible=False, sources=['upload'], type="numpy", label=f'Condition {i+1}', scale=3, height=200)
                            typ = gr.Dropdown(condition_types, visible=False, interactive=True, label="type", scale=1)
                    imageboxes.append(img)
                    imageboxes.append(typ)
                s.change(variable_image_outputs, s, imageboxes)
        with gr.Column(scale=2):
            with gr.Row():
                prompt = gr.Textbox(label="Prompt")
            with gr.Row():
                with gr.Column():
                    with gr.Accordion("Advanced options", open=False):
                        num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=4, step=1)
                        image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
                        strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1, step=0.01)

                        local_strength = gr.Slider(label="Local Strength", minimum=0, maximum=2, value=1, step=0.01)
                        global_strength = gr.Slider(label="Global Strength", minimum=0, maximum=2, value=1, step=0.01)
                        color_strength = gr.Slider(label="Color Strength", minimum=0, maximum=2, value=1, step=0.01)
                        
                        ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
                        scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
                        seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, value=42, step=1)
                        eta = gr.Number(label="Eta (DDIM)", value=0.0)
                        
                        a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
                        n_prompt = gr.Textbox(label="Negative Prompt",
                                              value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')


            with gr.Row():
                run_button = gr.Button(value="Run")
            with gr.Row():
                image_gallery = gr.Gallery(label='Generation', show_label=True, elem_id="gallery", columns=[4], rows=[1], height='auto', interactive=False)
            with gr.Row():
                cond_gallery = gr.Gallery(label='Condition', show_label=True, elem_id="gallery", columns=[4], rows=[1], height='auto', interactive=False)

            inputs = [prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, 
                      strength, scale, seed, eta, local_strength, global_strength, color_strength] + imageboxes
            run_button.click(fn=process, inputs=inputs, outputs=[image_gallery, cond_gallery])


# uncomment this block in case you need it
# os.environ['http_proxy'] = ''
# os.environ['https_proxy'] = ''
# os.environ['no_proxy'] = 'localhost,127.0.0.0/8,127.0.1.1'
# os.environ['HTTP_PROXY'] = ''
# os.environ['HTTPS_PROXY'] = ''
# os.environ['NO_PROXY'] = 'localhost,127.0.0.0/8,127.0.1.1'
# os.environ['TMPDIR'] = './tmpfiles'


block.launch(server_name='0.0.0.0', allowed_paths=["."], share=False)