Spaces:
Runtime error
Runtime error
File size: 9,171 Bytes
73ac9f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import hopsworks
import pandas as pd
import os
from datetime import datetime, timedelta
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import train_test_split
import joblib
from pathlib import Path
import hsfs
import hsml
# Define the base directory as the project root
BASE_DIR = Path(__file__).resolve().parent.parent.parent
class Trainer:
def __init__(self, project_name, feature_group_name, model_registry_name, api_key):
self.project_name = project_name
self.feature_group_name = feature_group_name
self.model_registry_name = model_registry_name
self.api_key = api_key
self.project = hopsworks.login(api_key_value=self.api_key)
self.fs = self.project.get_feature_store()
self.model_registry = self.project.get_model_registry()
self.feature_view = None
self.deployment = None
def create_feature_view(self):
"""Select features from the feature group and create a feature view."""
selected_features = self.fs.get_or_create_feature_group(
name=self.feature_group_name,
version=1
).select_all()
print("Feature group selected successfully......... --->>")
"""Create or get a feature view for the last 30 days of data."""
try:
self.feature_view = self.fs.get_or_create_feature_view(
name=f"{self.feature_group_name}_view",
version=1,
description="Feature view with last 30 days of data for model training",
query=selected_features,
)
print("Feature view created or retrieved successfully.")
except hsfs.client.exceptions.RestAPIError as e:
print(f"Error creating feature view: {e}")
def delete_feature_view(self):
"""Delete the feature view."""
try:
self.feature_view.delete()
print("Feature view deleted successfully.")
except hsfs.client.exceptions.RestAPIError as e:
print(f"Error deleting feature view: {e}")
def get_retrain_data_from_feature_view(self):
"""Pull the last 30 days of data from the feature view till today."""
start_time = datetime.now() - timedelta(days=30)
end_time = datetime.now()
# Get the data as a DataFrame from the feature view
df = self.feature_view.get_batch_data(
start_time=start_time, end_time=end_time)
# sort by datetime
df = df.sort_values(by='datetime', ascending=False)
print("Data pulled from feature view for retraining successfully.")
return df
def get_plot_data_from_feature_view(self, hours):
# get last 12 hours of data starting from current hour to plot
start_time = datetime.now() - timedelta(hours=hours)
end_time = datetime.now()
# Get the data as a DataFrame from the feature view
df = self.feature_view.get_batch_data(
start_time=start_time, end_time=end_time)
# sort by datetime
df = df.sort_values(by='datetime', ascending=False)
print("Data pulled from feature view for plotting successfully.")
return df
def train_test_split(self, df, test_size=0.2):
"""Split data into training and test sets."""
# Define feature columns based on lagged features
feature_columns = [
f"{prefix}_lag_{i}" for i in range(0, 13) for prefix in ["open", "high", "low", "close"]
]
# Separate features and target
X = df[feature_columns]
y = df['target']
# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=test_size, random_state=42)
print("Data split into train and test sets.")
return X_train, X_test, y_train, y_test
def get_features_labels(self, df):
"""Split data into features and labels."""
# Define feature columns based on lagged features
feature_columns = [
f"{prefix}_lag_{i}" for i in range(0, 13) for prefix in ["open", "high", "low", "close"]
]
# Separate features and target
X = df[feature_columns]
y = df['target']
return X, y
def train_model(self, model, X_train, y_train):
"""Train the model on training data."""
model.fit(X_train, y_train)
print("Model training completed.")
return model
def evaluate_model(self, model, X_test, y_test, **kwargs):
"""Evaluate the model on the hold-out test set."""
y_pred = model.predict(X_test)
# if show_pred in kwargs is true, print the predictions
if "show_pred" in kwargs:
print(f"Predictions: {y_pred}")
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Model Evaluation:\nMSE: {mse}\nMAE: {mae}\nR2 Score: {r2}")
return {"mse": mse, "mae": mae, "r2": r2}
def save_model_to_registry(self, model, metrics, model_schema, X_train):
"""Save the trained model to Hopsworks Model Registry."""
# Use BASE_DIR to define the model directory and path
model_dir = BASE_DIR / "models"
# Ensure the directory exists
if not model_dir.exists():
model_dir.mkdir(parents=True, exist_ok=True)
model_path = model_dir / f"{self.model_registry_name}.pkl"
joblib.dump(model, model_path)
new_model = self.model_registry.sklearn.create_model(
name=self.model_registry_name,
metrics=metrics,
model_schema=model_schema,
input_example=X_train.sample(),
description="Trained model with 30-day feature view data",
)
# Register the model and serve as endpoint
new_model.save(str(model_path))
# new_model.deploy()
print("Model saved to registry successfully.")
def model_deploy(self):
model = self.model_registry.get_model(
self.model_registry_name)
# strip all _ from self.model_registry_name and keep only alphanumeric characters
deploy_name = self.model_registry_name.replace("_", "")
# Get the dataset API for the project
dataset_api = self.project.get_dataset_api()
# Upload the file "predict_example.py" to the "Models" dataset
# If a file with the same name already exists, overwrite it
predictor_local_path = BASE_DIR / "src" / \
"training_pipeline" / "kserve_predict_script.py"
uploaded_file_path = dataset_api.upload(
predictor_local_path, "Models", overwrite=True)
# Construct the full path to the uploaded predictor script
predictor_script_path = os.path.join(
"/Projects", self.project_name, uploaded_file_path)
self.deployment = model.deploy(
name=deploy_name,
script_file=predictor_script_path,)
# start the deployment
self.deployment.start()
def predict_with_hopsworks_api(self, X):
"""Use the deployed model to make predictions via the Hopsworks API."""
# Get model serving handle from the project
model_serving = self.project.get_model_serving()
model = self.model_registry.get_model(
self.model_registry_name, version=1)
# Ensure the deployment name follows the required regex pattern
deploy_name = self.model_registry_name.replace("_", "")
try:
# Get the deployment
deployment = model_serving.get_deployment(name=deploy_name)
# Make predictions
predictions = deployment.predict(inputs=X.values.tolist())
print("Predictions made via Hopsworks model API.")
return predictions
except hsml.client.exceptions.RestAPIError as e:
print(f"Error making predictions: {e}")
return None
except Exception as e:
print(f"Unexpected error: {e}")
return None
def stop_model_deployment(self):
model = self.model_registry.get_model(
self.model_registry_name, version=1)
# Ensure the deployment name follows the required regex pattern
deploy_name = self.model_registry_name.replace("_", "")
# Get model serving handle
model_serving = self.project.get_model_serving()
try:
# List deployments
deployments = model_serving.get_deployments(model)
for deployment in deployments:
if deployment.name == deploy_name:
# deployment.stop()
deployment.delete(force=True)
print(
f"Deployment {deploy_name} stopped and deleted successfully.")
break
else:
print(f"No deployment found with name: {deploy_name}")
except hsml.client.exceptions.RestAPIError as e:
print(f"Error stopping or deleting deployment: {e}")
return model
|