File size: 9,171 Bytes
73ac9f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import hopsworks
import pandas as pd
import os
from datetime import datetime, timedelta
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import train_test_split
import joblib
from pathlib import Path
import hsfs
import hsml

# Define the base directory as the project root
BASE_DIR = Path(__file__).resolve().parent.parent.parent


class Trainer:
    def __init__(self, project_name, feature_group_name, model_registry_name, api_key):
        self.project_name = project_name
        self.feature_group_name = feature_group_name
        self.model_registry_name = model_registry_name
        self.api_key = api_key
        self.project = hopsworks.login(api_key_value=self.api_key)
        self.fs = self.project.get_feature_store()
        self.model_registry = self.project.get_model_registry()
        self.feature_view = None
        self.deployment = None

    def create_feature_view(self):
        """Select features from the feature group and create a feature view."""
        selected_features = self.fs.get_or_create_feature_group(
            name=self.feature_group_name,
            version=1
        ).select_all()

        print("Feature group selected successfully......... --->>")

        """Create or get a feature view for the last 30 days of data."""
        try:
            self.feature_view = self.fs.get_or_create_feature_view(
                name=f"{self.feature_group_name}_view",
                version=1,
                description="Feature view with last 30 days of data for model training",
                query=selected_features,
            )
            print("Feature view created or retrieved successfully.")
        except hsfs.client.exceptions.RestAPIError as e:
            print(f"Error creating feature view: {e}")

    def delete_feature_view(self):
        """Delete the feature view."""
        try:
            self.feature_view.delete()
            print("Feature view deleted successfully.")
        except hsfs.client.exceptions.RestAPIError as e:
            print(f"Error deleting feature view: {e}")

    def get_retrain_data_from_feature_view(self):
        """Pull the last 30 days of data from the feature view till today."""
        start_time = datetime.now() - timedelta(days=30)
        end_time = datetime.now()

        # Get the data as a DataFrame from the feature view
        df = self.feature_view.get_batch_data(
            start_time=start_time, end_time=end_time)

        # sort by datetime
        df = df.sort_values(by='datetime', ascending=False)
        print("Data pulled from feature view for retraining successfully.")
        return df

    def get_plot_data_from_feature_view(self, hours):
        # get last 12 hours of data starting from current hour to plot
        start_time = datetime.now() - timedelta(hours=hours)
        end_time = datetime.now()

        # Get the data as a DataFrame from the feature view
        df = self.feature_view.get_batch_data(
            start_time=start_time, end_time=end_time)

        # sort by datetime
        df = df.sort_values(by='datetime', ascending=False)
        print("Data pulled from feature view for plotting successfully.")
        return df

    def train_test_split(self, df, test_size=0.2):
        """Split data into training and test sets."""
        # Define feature columns based on lagged features
        feature_columns = [
            f"{prefix}_lag_{i}" for i in range(0, 13) for prefix in ["open", "high", "low", "close"]
        ]

        # Separate features and target
        X = df[feature_columns]
        y = df['target']

        # Split into train and test sets
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=test_size, random_state=42)
        print("Data split into train and test sets.")
        return X_train, X_test, y_train, y_test

    def get_features_labels(self, df):
        """Split data into features and labels."""
        # Define feature columns based on lagged features
        feature_columns = [
            f"{prefix}_lag_{i}" for i in range(0, 13) for prefix in ["open", "high", "low", "close"]
        ]

        # Separate features and target
        X = df[feature_columns]
        y = df['target']
        return X, y

    def train_model(self, model, X_train, y_train):
        """Train the model on training data."""
        model.fit(X_train, y_train)
        print("Model training completed.")
        return model

    def evaluate_model(self, model, X_test, y_test, **kwargs):
        """Evaluate the model on the hold-out test set."""
        y_pred = model.predict(X_test)
        # if show_pred in kwargs is true, print the predictions
        if "show_pred" in kwargs:
            print(f"Predictions: {y_pred}")
        mse = mean_squared_error(y_test, y_pred)
        mae = mean_absolute_error(y_test, y_pred)
        r2 = r2_score(y_test, y_pred)

        print(f"Model Evaluation:\nMSE: {mse}\nMAE: {mae}\nR2 Score: {r2}")
        return {"mse": mse, "mae": mae, "r2": r2}

    def save_model_to_registry(self, model, metrics, model_schema, X_train):
        """Save the trained model to Hopsworks Model Registry."""
        # Use BASE_DIR to define the model directory and path
        model_dir = BASE_DIR / "models"
        # Ensure the directory exists
        if not model_dir.exists():
            model_dir.mkdir(parents=True, exist_ok=True)

        model_path = model_dir / f"{self.model_registry_name}.pkl"
        joblib.dump(model, model_path)

        new_model = self.model_registry.sklearn.create_model(
            name=self.model_registry_name,
            metrics=metrics,
            model_schema=model_schema,
            input_example=X_train.sample(),
            description="Trained model with 30-day feature view data",
        )

        # Register the model and serve as endpoint
        new_model.save(str(model_path))
        # new_model.deploy()
        print("Model saved to registry successfully.")

    def model_deploy(self):
        model = self.model_registry.get_model(
            self.model_registry_name)

        # strip all _ from self.model_registry_name and keep only alphanumeric characters
        deploy_name = self.model_registry_name.replace("_", "")

        # Get the dataset API for the project
        dataset_api = self.project.get_dataset_api()

        # Upload the file "predict_example.py" to the "Models" dataset
        # If a file with the same name already exists, overwrite it
        predictor_local_path = BASE_DIR / "src" / \
            "training_pipeline" / "kserve_predict_script.py"
        uploaded_file_path = dataset_api.upload(
            predictor_local_path, "Models", overwrite=True)

        # Construct the full path to the uploaded predictor script
        predictor_script_path = os.path.join(
            "/Projects", self.project_name, uploaded_file_path)

        self.deployment = model.deploy(
            name=deploy_name,
            script_file=predictor_script_path,)

        # start the deployment
        self.deployment.start()

    def predict_with_hopsworks_api(self, X):
        """Use the deployed model to make predictions via the Hopsworks API."""
        # Get model serving handle from the project
        model_serving = self.project.get_model_serving()

        model = self.model_registry.get_model(
            self.model_registry_name, version=1)

        # Ensure the deployment name follows the required regex pattern
        deploy_name = self.model_registry_name.replace("_", "")

        try:
            # Get the deployment
            deployment = model_serving.get_deployment(name=deploy_name)

            # Make predictions
            predictions = deployment.predict(inputs=X.values.tolist())
            print("Predictions made via Hopsworks model API.")
            return predictions
        except hsml.client.exceptions.RestAPIError as e:
            print(f"Error making predictions: {e}")
            return None
        except Exception as e:
            print(f"Unexpected error: {e}")
            return None

    def stop_model_deployment(self):
        model = self.model_registry.get_model(
            self.model_registry_name, version=1)
        # Ensure the deployment name follows the required regex pattern
        deploy_name = self.model_registry_name.replace("_", "")

        # Get model serving handle
        model_serving = self.project.get_model_serving()

        try:
            # List deployments
            deployments = model_serving.get_deployments(model)
            for deployment in deployments:
                if deployment.name == deploy_name:
                    # deployment.stop()
                    deployment.delete(force=True)
                    print(
                        f"Deployment {deploy_name} stopped and deleted successfully.")
                    break
            else:
                print(f"No deployment found with name: {deploy_name}")
        except hsml.client.exceptions.RestAPIError as e:
            print(f"Error stopping or deleting deployment: {e}")

        return model