Spaces:
Sleeping
Sleeping
File size: 53,814 Bytes
140387c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 |
/* Inference for Llama-2 Transformer model in pure C
* With added CUDA support initially drawing from
* https://github.com/ankan-ban/llama2.cu/blob/master/llama2.cu
* and structured in a way that hopefully makes keeping it
* up-to-date straightforward.
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <time.h>
#include <math.h>
#include <string.h>
#include <fcntl.h>
#include <assert.h>
#include <future>
#if defined _WIN32
#include "win.h"
#else
#include <unistd.h>
#include <sys/mman.h>
#endif
#include "llama2.h"
#ifdef USE_CUDA
#include <cuda_runtime.h>
#include <cub/cub.cuh>
#include <cublas_v2.h>
// Each CUDA function call should be checked for errors.
#define CUCHK(err) cuda_check((err), __FILE__, __LINE__)
inline void cuda_check(cudaError_t error_code, const char *file, int line)
{
if (error_code != cudaSuccess)
{
fprintf(stderr, "CUDA Error %d: %s. In file '%s' on line %d\n", error_code, cudaGetErrorString(error_code), file, line);
fflush(stderr);
exit(error_code);
}
}
// cublasHandle_t g_cublas_handle = nullptr;
// void create_cublas_handle() {
// cublasStatus_t stat = cublasCreate(&g_cublas_handle); // FIXME cublasDestroy
// if (stat != CUBLAS_STATUS_SUCCESS) {
// printf ("CUBLAS initialization failed\n");
// exit(EXIT_FAILURE);
// }
// }
// void destroy_cublas_handle() {
// cublasStatus_t stat = cublasDestroy(g_cublas_handle);
// if (stat != CUBLAS_STATUS_SUCCESS) {
// printf ("CUBLAS initialization failed\n");
// exit(EXIT_FAILURE);
// }
// }
#endif
// ----------------------------------------------------------------------------
// Transformer model
typedef struct {
int dim; // transformer dimension
int hidden_dim; // for ffn layers
int n_layers; // number of layers
int n_heads; // number of query heads
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
int vocab_size; // vocabulary size, usually 256 (byte-level)
int seq_len; // max sequence length
} Config;
// CUDA NOTE: The TransformerWeights structure will be stored on the host,
// but all of the pointers in the structure will point to data on the GPU.
// The checkpoint file is mmap-ed to the host and the weights portion
// is allocated on and copied to the GPU. Then, memory_map_weights() updates
// these structure pointers to point to the proper location. Happily, this
// function is the same for both C and CUDA.
typedef struct {
// token embedding table
float* token_embedding_table; // (vocab_size, dim)
// weights for rmsnorms
float* rms_att_weight; // (layer, dim) rmsnorm weights
float* rms_ffn_weight; // (layer, dim)
// weights for matmuls. note dim == n_heads * head_size
float* wq; // (layer, dim, n_heads * head_size)
float* wk; // (layer, dim, n_kv_heads * head_size)
float* wv; // (layer, dim, n_kv_heads * head_size)
float* wo; // (layer, n_heads * head_size, dim)
// weights for ffn
float* w1; // (layer, hidden_dim, dim)
float* w2; // (layer, dim, hidden_dim)
float* w3; // (layer, hidden_dim, dim)
// final rmsnorm
float* rms_final_weight; // (dim,)
// (optional) classifier weights for the logits, on the last layer
float* wcls;
} TransformerWeights;
// CUDA NOTE: The RunState structure will be stored on the host, but all of the
// pointers in the structure will point to data on the GPU, created via
// cudaMalloc. The exception is logits which is the final result of the
// transformer & is copied from the GPU as the last step in the transformer
// and is used by the host.
typedef struct {
// current wave of activations
float *x; // activation at current time stamp (dim,)
float *xb; // same, but inside a residual branch (dim,)
float *xb2; // an additional buffer just for convenience (dim,)
float *hb; // buffer for hidden dimension in the ffn (hidden_dim,)
float *hb2; // buffer for hidden dimension in the ffn (hidden_dim,)
float *q; // query (dim,)
float *k; // key (dim,)
float *v; // value (dim,)
float *att; // buffer for scores/attention values (n_heads, seq_len)
#ifdef USE_CUDA
float *logits_gpu; // output logits in GPU
#endif
float *logits; // output logits in CPU
// kv cache
float* key_cache; // (layer, seq_len, dim)
float* value_cache; // (layer, seq_len, dim)
} RunState;
typedef struct {
Config config; // the hyperparameters of the architecture (the blueprint)
TransformerWeights weights; // the weights of the model
RunState state; // buffers for the "wave" of activations in the forward pass
// some more state needed to properly clean up the memory mapping (sigh)
int fd; // file descriptor for memory mapping
float* data; // memory mapped data pointer
ssize_t file_size; // size of the checkpoint file in bytes
} Transformer;
#ifdef USE_CUDA
void malloc_run_state(RunState* s, Config* p) {
// we calloc instead of malloc to keep valgrind happy
int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads;
CUCHK(cudaMalloc((void**)&s->x, p->dim * sizeof(float)));
CUCHK(cudaMalloc((void**)&s->xb, p->dim * sizeof(float)));
CUCHK(cudaMalloc((void**)&s->xb2, p->dim * sizeof(float)));
CUCHK(cudaMalloc((void**)&s->hb, p->hidden_dim * sizeof(float)));
CUCHK(cudaMalloc((void**)&s->hb2, p->hidden_dim * sizeof(float)));
CUCHK(cudaMalloc((void**)&s->q, p->dim * sizeof(float)));
CUCHK(cudaMalloc((void**)&s->key_cache, p->n_layers * p->seq_len * kv_dim * sizeof(float)));
CUCHK(cudaMalloc((void**)&s->value_cache, p->n_layers * p->seq_len * kv_dim * sizeof(float)));
CUCHK(cudaMalloc((void**)&s->att, p->n_heads * p->seq_len * sizeof(float)));
CUCHK(cudaMalloc((void**)&s->logits_gpu, p->vocab_size * sizeof(float)));
s->logits = (float *)calloc(p->vocab_size, sizeof(float));
// ensure all mallocs went fine
if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q
|| !s->key_cache || !s->value_cache || !s->att || !s->logits_gpu || !s->logits) {
fprintf(stderr, "malloc failed!\n");
exit(EXIT_FAILURE);
}
}
#else
void malloc_run_state(RunState* s, Config* p) {
// we calloc instead of malloc to keep valgrind happy
int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads;
s->x = (float *)calloc(p->dim, sizeof(float));
s->xb = (float *)calloc(p->dim, sizeof(float));
s->xb2 = (float *)calloc(p->dim, sizeof(float));
s->hb = (float *)calloc(p->hidden_dim, sizeof(float));
s->hb2 = (float *)calloc(p->hidden_dim, sizeof(float));
s->q = (float *)calloc(p->dim, sizeof(float));
s->key_cache = (float *)calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));
s->value_cache = (float *)calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));
s->att = (float *)calloc(p->n_heads * p->seq_len, sizeof(float));
s->logits = (float *)calloc(p->vocab_size, sizeof(float));
// ensure all mallocs went fine
if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q
|| !s->key_cache || !s->value_cache || !s->att || !s->logits) {
fprintf(stderr, "malloc failed!\n");
exit(EXIT_FAILURE);
}
}
#endif
#ifdef USE_CUDA
void free_run_state(RunState* s) {
CUCHK(cudaFree(s->x));
CUCHK(cudaFree(s->xb));
CUCHK(cudaFree(s->xb2));
CUCHK(cudaFree(s->hb));
CUCHK(cudaFree(s->hb2));
CUCHK(cudaFree(s->q));
CUCHK(cudaFree(s->att));
CUCHK(cudaFree(s->logits_gpu));
free(s->logits);
CUCHK(cudaFree(s->key_cache));
CUCHK(cudaFree(s->value_cache));
}
#else
void free_run_state(RunState* s) {
free(s->x);
free(s->xb);
free(s->xb2);
free(s->hb);
free(s->hb2);
free(s->q);
free(s->att);
free(s->logits);
free(s->key_cache);
free(s->value_cache);
}
#endif
void memory_map_weights(TransformerWeights *w, Config* p, float* ptr, int shared_weights) {
int head_size = p->dim / p->n_heads;
// make sure the multiplications below are done in 64bit to fit the parameter counts of 13B+ models
unsigned long long n_layers = p->n_layers;
w->token_embedding_table = ptr;
ptr += p->vocab_size * p->dim;
w->rms_att_weight = ptr;
ptr += n_layers * p->dim;
w->wq = ptr;
ptr += n_layers * p->dim * (p->n_heads * head_size);
w->wk = ptr;
ptr += n_layers * p->dim * (p->n_kv_heads * head_size);
w->wv = ptr;
ptr += n_layers * p->dim * (p->n_kv_heads * head_size);
w->wo = ptr;
ptr += n_layers * (p->n_heads * head_size) * p->dim;
w->rms_ffn_weight = ptr;
ptr += n_layers * p->dim;
w->w1 = ptr;
ptr += n_layers * p->dim * p->hidden_dim;
w->w2 = ptr;
ptr += n_layers * p->hidden_dim * p->dim;
w->w3 = ptr;
ptr += n_layers * p->dim * p->hidden_dim;
w->rms_final_weight = ptr;
ptr += p->dim;
ptr += p->seq_len * head_size / 2; // skip what used to be freq_cis_real (for RoPE)
ptr += p->seq_len * head_size / 2; // skip what used to be freq_cis_imag (for RoPE)
w->wcls = shared_weights ? w->token_embedding_table : ptr;
}
void read_checkpoint(char* checkpoint, Config* config, TransformerWeights* weights,
int* fd, float** data, ssize_t* file_size) {
FILE *file = fopen(checkpoint, "rb");
if (!file) { fprintf(stderr, "Couldn't open file %s\n", checkpoint); exit(EXIT_FAILURE); }
// read in the config header
if (fread(config, sizeof(Config), 1, file) != 1) { exit(EXIT_FAILURE); }
// negative vocab size is hacky way of signaling unshared weights. bit yikes.
int shared_weights = config->vocab_size > 0 ? 1 : 0;
config->vocab_size = abs(config->vocab_size);
// figure out the file size
fseek(file, 0, SEEK_END); // move file pointer to end of file
*file_size = ftell(file); // get the file size, in bytes
fclose(file);
// memory map the Transformer weights into the data pointer
*fd = open(checkpoint, O_RDONLY); // open in read only mode
if (*fd == -1) { fprintf(stderr, "open failed!\n"); exit(EXIT_FAILURE); }
*data = (float *)mmap(NULL, *file_size, PROT_READ, MAP_PRIVATE, *fd, 0);
if (*data == MAP_FAILED) { fprintf(stderr, "mmap failed!\n"); exit(EXIT_FAILURE); }
#ifdef USE_CUDA
// allocate & copy mmap data to the gpu first
// TODO: allocate & copy just a portion to the GPU if the weights are too big
// to fit in the GPU, then copy the data only as needed while running.
float* weights_ptr;
size_t weights_size = *file_size - sizeof(Config);
CUCHK(cudaMalloc((void**)&weights_ptr, weights_size));
CUCHK(cudaMemcpy(weights_ptr, *data + sizeof(Config)/sizeof(float), weights_size, cudaMemcpyHostToDevice));
#else
float* weights_ptr = *data + sizeof(Config)/sizeof(float);
#endif
memory_map_weights(weights, config, weights_ptr, shared_weights);
}
void build_transformer(Transformer *t, char* checkpoint_path) {
// read in the Config and the Weights from the checkpoint
read_checkpoint(checkpoint_path, &t->config, &t->weights, &t->fd, &t->data, &t->file_size);
// allocate the RunState buffers
malloc_run_state(&t->state, &t->config);
}
void free_transformer(Transformer* t) {
// close the memory mapping
if (t->data != MAP_FAILED) { munmap(t->data, t->file_size); }
if (t->fd != -1) { close(t->fd); }
#ifdef USE_CUDA
// we cudaMalloc a region of memory, then hand the address to
// the token_embedding_table field. Free it here.
CUCHK(cudaFree(t->weights.token_embedding_table));
#endif
// free the RunState buffers
free_run_state(&t->state);
}
// ----------------------------------------------------------------------------
// neural net blocks; the dynamics of the Transformer
#ifdef USE_CUDA
// Utility routine to divide a into ceiling of b parts
int divUp(int a, int b) {
return (a - 1) / b + 1;
}
const int num_threads_lrg = 1024;
const int num_threads_med = 256;
__global__ void rmsnorm_kernel(float* o, float* x, float* weight, int size, int elementsPerThread) {
// parallel reduction of sum of squares via CUB
float ss = 0.0f;
for (int i = 0; i < elementsPerThread; i++) {
int j = threadIdx.x + i * num_threads_lrg;
if (j < size)
ss += x[j] * x[j];
}
using BlockReduce = cub::BlockReduce<float, num_threads_lrg>;
__shared__ typename BlockReduce::TempStorage temp;
ss = BlockReduce(temp).Sum(ss);
// serialization point to calculate normalization factor
__shared__ float shared_ss;
if (threadIdx.x == 0) {
ss /= size;
ss += 1e-5f;
ss = 1.0f / sqrtf(ss);
shared_ss = ss;
}
__syncthreads();
ss = shared_ss;
// normalize and scale
for (int i = 0; i < elementsPerThread; i++) {
int j = threadIdx.x + i * num_threads_lrg;
if (j < size) {
o[j] = weight[j] * (ss * x[j]);
}
}
}
void rmsnorm(float* o, float* x, float* weight, int size) {
int elementsPerThread = divUp(size, num_threads_lrg);
rmsnorm_kernel <<<1, num_threads_lrg >>> (o, x, weight, size, elementsPerThread);
}
#else
void rmsnorm(float* o, float* x, float* weight, int size) {
// calculate sum of squares
float ss = 0.0f;
for (int j = 0; j < size; j++) {
ss += x[j] * x[j];
}
ss /= size;
ss += 1e-5f;
ss = 1.0f / sqrtf(ss);
// normalize and scale
for (int j = 0; j < size; j++) {
o[j] = weight[j] * (ss * x[j]);
}
}
#endif
#ifdef USE_CUDA
__device__ void softmax_gpu(float* __restrict__ x, int size) {
int tid = threadIdx.x;
int step = blockDim.x;
// find max value (for numerical stability)
float max_val = tid < size ? x[tid] : 0;
for (int i = tid + step; i < size; i += step) {
if (x[i] > max_val) {
max_val = x[i];
}
}
using BlockReduce = cub::BlockReduce<float, num_threads_lrg>;
__shared__ typename BlockReduce::TempStorage temp;
__shared__ float shared_val;
max_val = BlockReduce(temp).Reduce(max_val, cub::Max());
if (threadIdx.x == 0) {
shared_val = max_val;
}
__syncthreads();
max_val = shared_val;
// exp and sum
float sum = 0.0f;
for (int i = tid; i < size; i += step) {
x[i] = expf(x[i] - max_val);
sum += x[i];
}
sum = BlockReduce(temp).Sum(sum);
if (threadIdx.x == 0) {
shared_val = sum;
}
__syncthreads();
sum = shared_val;
// normalize
for (int i = tid; i < size; i += step) {
x[i] /= sum;
}
}
#endif
void softmax(float* x, int size) {
// find max value (for numerical stability)
float max_val = x[0];
for (int i = 1; i < size; i++) {
if (x[i] > max_val) {
max_val = x[i];
}
}
// exp and sum
float sum = 0.0f;
for (int i = 0; i < size; i++) {
x[i] = expf(x[i] - max_val);
sum += x[i];
}
// normalize
for (int i = 0; i < size; i++) {
x[i] /= sum;
}
}
#ifdef USE_CUDA
// Use cuBLAS for matmul to leverage this included, high-performance library.
void matmul(cublasHandle_t handle, float* xout, float* x, float* w, int n, int d) {
// W (d,n) @ x (n,) -> xout (d,)
// W is stored in this order: (n=0,d=0), (n=1,d=0), (n=2,d=0), ...
// so W is n x d in cublas terms & we'll need to transpose.
// Sgemv does y = alpha * op(A) * x + beta * y (modifying y)
// where op can transpose the matrix A
// Translating to our local vars, that is
// xout = 1.0*op(w)*x + 0.0*xout
float alpha = 1.0f;
float beta = 0.0f; // when this is 0, xout will not be used for input
cublasSgemv(handle, CUBLAS_OP_T, n, d, &alpha, w, n, x, 1, &beta, xout, 1);
}
#else
void matmul(float* xout, float* x, float* w, int n, int d) {
// W (d,n) @ x (n,) -> xout (d,)
// by far the most amount of time is spent inside this little function
int i;
#pragma omp parallel for private(i)
for (i = 0; i < d; i++) {
float val = 0.0f;
for (int j = 0; j < n; j++) {
val += w[i * n + j] * x[j];
}
xout[i] = val;
}
}
#endif
// Additional neural net blocks (brought out from transformer function)
#ifdef USE_CUDA
__global__ void RoPe_rotation_kernel(int pos, float *sq, float *sk, int kv_dim, int head_size) {
int i = threadIdx.x * 2 + blockIdx.x * head_size;
int head_dim = i % head_size;
float freq = 1.0f / powf(10000.0f, head_dim / (float)head_size);
float val = pos * freq;
float fcr = cosf(val);
float fci = sinf(val);
int rotn = i < kv_dim ? 2 : 1; // how many vectors? 2 = q & k, 1 = q only
for (int v = 0; v < rotn; v++) {
float* vec = v == 0 ? sq : sk; // the vector to rotate (query or key)
float v0 = vec[i];
float v1 = vec[i+1];
vec[i] = v0 * fcr - v1 * fci;
vec[i+1] = v0 * fci + v1 * fcr;
}
}
void RoPe_rotation(int pos, RunState* s, int dim, int kv_dim, int head_size) {
RoPe_rotation_kernel <<<dim/head_size, head_size/2 >>> (pos, s->q, s->k, kv_dim, head_size);
}
#else
void RoPe_rotation(int pos, RunState* s, int dim, int kv_dim, int head_size) { //s->q, s->k, freq_cis_real_row, freq_cis_imag_row, p->n_heads, head_size) {
for (int i = 0; i < dim; i+=2) {
int head_dim = i % head_size;
float freq = 1.0f / powf(10000.0f, head_dim / (float)head_size);
float val = pos * freq;
float fcr = cosf(val);
float fci = sinf(val);
int rotn = i < kv_dim ? 2 : 1; // how many vectors? 2 = q & k, 1 = q only
for (int v = 0; v < rotn; v++) {
float* vec = v == 0 ? s->q : s->k; // the vector to rotate (query or key)
float v0 = vec[i];
float v1 = vec[i+1];
vec[i] = v0 * fcr - v1 * fci;
vec[i+1] = v0 * fci + v1 * fcr;
}
}
}
#endif
#ifdef USE_CUDA
// TODO refactor vs C code
__global__ void multi_head_attention_kernel(int pos, int seq_len, float *sq, float *satt, float *sxb, float *key_cache, float *value_cache, int kv_dim, int kv_mul, int head_size, int loff) {
int h = blockIdx.x;
// get the query vector for this head
float* q = sq + h * head_size;
// attention scores for this head
float* att = satt + h * seq_len;
// iterate over all timesteps, including the current one
// In CUDA, each thread does a small portion of the calc
for (int t = threadIdx.x; t <= pos; t += blockDim.x) {
// get the key vector for this head and at this timestep
float* k = key_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
// calculate the attention score as the dot product of q and k
float score = 0.0f;
for (int i = 0; i < head_size; i++) {
score += q[i] * k[i];
}
score /= sqrtf(head_size);
// save the score to the attention buffer
att[t] = score;
}
// above was this threads portion of the iteration. wait for all threads to finish
__syncthreads();
// softmax the scores to get attention weights, from 0..pos inclusively
softmax_gpu(att, pos + 1);
__syncthreads();
// weighted sum of the values, store back into xb
// NOTE: by swapping the order of the for loops (vs. C) a simpler
// version of the code accomplishes the same task and fits more
// naturally with the CUDA way of subdividing the problem.
float* xb = sxb + h * head_size;
for (int i = threadIdx.x; i < head_size; i += blockDim.x) {
float val = 0.0f;
for (int t = 0; t <= pos; t++) {
// get the value vector for this head and at this timestep
float* v = value_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
// get the attention weight for this timestep
float a = att[t];
val += a * v[i];
}
xb[i] = val;
}
}
void multi_head_attention(int pos, Config* p, RunState* s, int kv_dim, int kv_mul, int head_size, int loff) {
multi_head_attention_kernel <<<p->n_heads, num_threads_lrg>>> (pos, p->seq_len, s->q, s->att, s->xb, s->key_cache, s->value_cache, kv_dim, kv_mul, head_size, loff);
}
#else
void multi_head_attention(int pos, Config* p, RunState* s, int kv_dim, int kv_mul, int head_size, int loff) {
int h;
#pragma omp parallel for private(h)
for (h = 0; h < p->n_heads; h++) {
// get the query vector for this head
float* q = s->q + h * head_size;
// attention scores for this head
float* att = s->att + h * p->seq_len;
// iterate over all timesteps, including the current one
for (int t = 0; t <= pos; t++) {
// get the key vector for this head and at this timestep
float* k = s->key_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
// calculate the attention score as the dot product of q and k
float score = 0.0f;
for (int i = 0; i < head_size; i++) {
score += q[i] * k[i];
}
score /= sqrtf(head_size);
// save the score to the attention buffer
att[t] = score;
}
// softmax the scores to get attention weights, from 0..pos inclusively
softmax(att, pos + 1);
// weighted sum of the values, store back into xb
float* xb = s->xb + h * head_size;
memset(xb, 0, head_size * sizeof(float));
for (int t = 0; t <= pos; t++) {
// get the value vector for this head and at this timestep
float* v = s->value_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
// get the attention weight for this timestep
float a = att[t];
// accumulate the weighted value into xb
for (int i = 0; i < head_size; i++) {
xb[i] += a * v[i];
}
}
}
}
#endif
#ifdef USE_CUDA
__global__ void f_silu_elementwise_mul_w3_kernel(float *shb, float *shb2, int hidden_dim) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < hidden_dim) {
float val = shb[i];
// silu(x)=x*σ(x), where σ(x) is the logistic sigmoid
val *= (1.0f / (1.0f + expf(-val)));
// elementwise multiply with w3(x)
val *= shb2[i];
shb[i] = val;
}
}
void f_silu_elementwise_mul_w3(RunState *s, int hidden_dim) {
f_silu_elementwise_mul_w3_kernel<<<divUp(hidden_dim, num_threads_med), num_threads_med>>>(s->hb, s->hb2, hidden_dim);
}
#else
void f_silu_elementwise_mul_w3(RunState *s, int hidden_dim) {
for (int i = 0; i < hidden_dim; i++) {
float val = s->hb[i];
// silu(x)=x*σ(x), where σ(x) is the logistic sigmoid
val *= (1.0f / (1.0f + expf(-val)));
// elementwise multiply with w3(x)
val *= s->hb2[i];
s->hb[i] = val;
}
}
#endif
#ifdef USE_CUDA
__global__ void accum_kernel(float* a, float* b, int size) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < size) {
a[i] += b[i];
}
}
void accum(float *a, float *b, int size) {
accum_kernel<<<divUp(size, num_threads_med), num_threads_med>>>(a,b,size);
}
#else
void accum(float *a, float *b, int size) {
for (int i = 0; i < size; i++) {
a[i] += b[i];
}
}
#endif
#ifdef USE_CUDA
float* forward(Transformer* transformer, int token, int pos, cublasHandle_t handle) {
#else
float* forward(Transformer* transformer, int token, int pos) {
#endif
// a few convenience variables
Config* p = &transformer->config;
TransformerWeights* w = &transformer->weights;
RunState* s = &transformer->state;
float *x = s->x;
int dim = p->dim;
int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads;
int kv_mul = p->n_heads / p->n_kv_heads; // integer multiplier of the kv sharing in multiquery
int hidden_dim = p->hidden_dim;
int head_size = dim / p->n_heads;
// copy the token embedding into x
float* content_row = w->token_embedding_table + token * dim;
#ifdef USE_CUDA
CUCHK(cudaMemcpy(x, content_row, dim*sizeof(*x), cudaMemcpyDeviceToDevice));
#else
memcpy(x, content_row, dim*sizeof(*x));
#endif
// forward all the layers
for(unsigned long long l = 0; l < p->n_layers; l++) {
// attention rmsnorm
rmsnorm(s->xb, x, w->rms_att_weight + l*dim, dim);
// key and value point to the kv cache
int loff = l * p->seq_len * kv_dim; // kv cache layer offset for convenience
s->k = s->key_cache + loff + pos * kv_dim;
s->v = s->value_cache + loff + pos * kv_dim;
// qkv matmuls for this position
#ifdef USE_CUDA
matmul(handle, s->q, s->xb, w->wq + l*dim*dim, dim, dim);
matmul(handle, s->k, s->xb, w->wk + l*dim*kv_dim, dim, kv_dim);
matmul(handle, s->v, s->xb, w->wv + l*dim*kv_dim, dim, kv_dim);
#else
matmul(s->q, s->xb, w->wq + l*dim*dim, dim, dim);
matmul(s->k, s->xb, w->wk + l*dim*kv_dim, dim, kv_dim);
matmul(s->v, s->xb, w->wv + l*dim*kv_dim, dim, kv_dim);
#endif
// RoPE relative positional encoding: complex-valued rotate q and k in each head
RoPe_rotation(pos, s, dim, kv_dim, head_size);
// multihead attention. iterate over all heads
multi_head_attention(pos, p, s, kv_dim, kv_mul, head_size, loff);
// final matmul to get the output of the attention
#ifdef USE_CUDA
matmul(handle, s->xb2, s->xb, w->wo + l*dim*dim, dim, dim);
#else
matmul(s->xb2, s->xb, w->wo + l*dim*dim, dim, dim);
#endif
// residual connection back into x
accum(x, s->xb2, dim);
// ffn rmsnorm
rmsnorm(s->xb, x, w->rms_ffn_weight + l*dim, dim);
// Now for FFN in PyTorch we have: self.w2(F.silu(self.w1(x)) * self.w3(x))
// first calculate self.w1(x) and self.w3(x)
#ifdef USE_CUDA
matmul(handle, s->hb, s->xb, w->w1 + l*dim*hidden_dim, dim, hidden_dim);
matmul(handle, s->hb2, s->xb, w->w3 + l*dim*hidden_dim, dim, hidden_dim);
#else
matmul(s->hb, s->xb, w->w1 + l*dim*hidden_dim, dim, hidden_dim);
matmul(s->hb2, s->xb, w->w3 + l*dim*hidden_dim, dim, hidden_dim);
#endif
// SwiGLU non-linearity
f_silu_elementwise_mul_w3(s, hidden_dim);
// final matmul to get the output of the ffn
#ifdef USE_CUDA
matmul(handle, s->xb, s->hb, w->w2 + l*dim*hidden_dim, hidden_dim, dim);
#else
matmul(s->xb, s->hb, w->w2 + l*dim*hidden_dim, hidden_dim, dim);
#endif
// residual connection
accum(x, s->xb, dim);
}
// final rmsnorm
rmsnorm(x, x, w->rms_final_weight, dim);
// classifier into logits
#ifdef USE_CUDA
matmul(handle, s->logits_gpu, x, w->wcls, p->dim, p->vocab_size);
CUCHK(cudaMemcpy(s->logits, s->logits_gpu, p->vocab_size * sizeof(float), cudaMemcpyDeviceToHost));
#else
matmul(s->logits, x, w->wcls, p->dim, p->vocab_size);
#endif
return s->logits;
}
// ----------------------------------------------------------------------------
// The Byte Pair Encoding (BPE) Tokenizer that translates strings <-> tokens
typedef struct {
char *str;
int id;
} TokenIndex;
typedef struct {
char** vocab;
float* vocab_scores;
TokenIndex *sorted_vocab;
int vocab_size;
unsigned int max_token_length;
unsigned char byte_pieces[512]; // stores all single-byte strings
} Tokenizer;
int compare_tokens(const void *a, const void *b) {
return strcmp(((TokenIndex*)a)->str, ((TokenIndex*)b)->str);
}
void build_tokenizer(Tokenizer* t, char* tokenizer_path, int vocab_size) {
// i should have written the vocab_size into the tokenizer file... sigh
t->vocab_size = vocab_size;
// malloc space to hold the scores and the strings
t->vocab = (char**)malloc(vocab_size * sizeof(char*));
t->vocab_scores = (float*)malloc(vocab_size * sizeof(float));
t->sorted_vocab = NULL; // initialized lazily
for (int i = 0; i < 256; i++) {
t->byte_pieces[i * 2] = (unsigned char)i;
t->byte_pieces[i * 2 + 1] = '\0';
}
// read in the file
FILE *file = fopen(tokenizer_path, "rb");
if (!file) { fprintf(stderr, "couldn't load %s\n", tokenizer_path); exit(EXIT_FAILURE); }
if (fread(&t->max_token_length, sizeof(int), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); }
int len;
for (int i = 0; i < vocab_size; i++) {
if (fread(t->vocab_scores + i, sizeof(float), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE);}
if (fread(&len, sizeof(int), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); }
t->vocab[i] = (char *)malloc(len + 1);
if (fread(t->vocab[i], len, 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); }
t->vocab[i][len] = '\0'; // add the string terminating token
}
fclose(file);
}
void free_tokenizer(Tokenizer* t) {
for (int i = 0; i < t->vocab_size; i++) { free(t->vocab[i]); }
free(t->vocab);
free(t->vocab_scores);
free(t->sorted_vocab);
}
char* decode(Tokenizer* t, int prev_token, int token) {
char *piece = t->vocab[token];
// following BOS (1) token, sentencepiece decoder strips any leading whitespace (see PR #89)
if (prev_token == 1 && piece[0] == ' ') { piece++; }
// careful, some tokens designate raw bytes, and look like e.g. '<0x01>'
// parse this and convert and return the actual byte
unsigned char byte_val;
if (sscanf(piece, "<0x%02hhX>", &byte_val) == 1) {
piece = (char*)t->byte_pieces + byte_val * 2;
}
return piece;
}
void safe_printf(char *piece) {
// piece might be a raw byte token, and we only want to print printable chars or whitespace
// because some of the other bytes can be various control codes, backspace, etc.
if (piece == NULL) { return; }
if (piece[0] == '\0') { return; }
if (piece[1] == '\0') {
unsigned char byte_val = piece[0];
if (!(isprint(byte_val) || isspace(byte_val))) {
return; // bad byte, don't print it
}
}
printf("%s", piece);
}
int str_lookup(char *str, TokenIndex *sorted_vocab, int vocab_size) {
// efficiently find the perfect match for str in vocab, return its index or -1 if not found
#if defined USE_CUDA && defined _WIN32
// CUDA on Windows was not capable of handling the syntax below
TokenIndex tok;
tok.str = str;
#else
TokenIndex tok = { .str = str }; // acts as the key to search for
#endif
TokenIndex *res = (TokenIndex *)bsearch(&tok, sorted_vocab, vocab_size, sizeof(TokenIndex), compare_tokens);
return res != NULL ? res->id : -1;
}
void encode(Tokenizer* t, char *text, int8_t bos, int8_t eos, int *tokens, int *n_tokens) {
// encode the string text (input) into an upper-bound preallocated tokens[] array
// bos != 0 means prepend the BOS token (=1), eos != 0 means append the EOS token (=2)
if (text == NULL) { fprintf(stderr, "cannot encode NULL text\n"); exit(EXIT_FAILURE); }
if (t->sorted_vocab == NULL) {
// lazily malloc and sort the vocabulary
t->sorted_vocab = (TokenIndex *)malloc(t->vocab_size * sizeof(TokenIndex));
for (int i = 0; i < t->vocab_size; i++) {
t->sorted_vocab[i].str = t->vocab[i];
t->sorted_vocab[i].id = i;
}
qsort(t->sorted_vocab, t->vocab_size, sizeof(TokenIndex), compare_tokens);
}
// create a temporary buffer that will store merge candidates of always two consecutive tokens
// *2 for concat, +1 for null terminator +2 for UTF8 (in case max_token_length is 1)
char* str_buffer = (char *)malloc((t->max_token_length*2 +1 +2) * sizeof(char));
size_t str_len = 0;
// start at 0 tokens
*n_tokens = 0;
// add optional BOS (=1) token, if desired
if (bos) tokens[(*n_tokens)++] = 1;
// add_dummy_prefix is true by default
// so prepend a dummy prefix token to the input string, but only if text != ""
// TODO: pretty sure this isn't correct in the general case but I don't have the
// energy to read more of the sentencepiece code to figure out what it's doing
if (text[0] != '\0') {
int dummy_prefix = str_lookup((char *)" ", t->sorted_vocab, t->vocab_size);
tokens[(*n_tokens)++] = dummy_prefix;
}
// Okay UTF-8 time. This will get messy. Here is the reference from Wikipedia:
// Code point ↔ UTF-8 conversion
// First code point Last code point Byte 1 Byte 2 Byte 3 Byte 4
// U+0000 U+007F 0xxxxxxx
// U+0080 U+07FF 110xxxxx 10xxxxxx
// U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
// U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
// process the raw (UTF-8) byte sequence of the input string
for (char *c = text; *c != '\0'; c++) {
// reset buffer if the current byte is ASCII or a leading byte
// 0xC0 is 11000000, so (*c & 0xC0) keeps the first 2 bits and zeros the rest
// 0x80 is 10000000
// in UTF-8, all continuation bytes start with "10" in first two bits
// so in English this is: "if this byte is not a continuation byte"
if ((*c & 0xC0) != 0x80) {
// this byte must be either a leading byte (11...) or an ASCII char (0x...)
// => reset our location, as we're starting a new UTF-8 codepoint
str_len = 0;
}
// append the current byte to the buffer
str_buffer[str_len++] = *c; // ++ is post-increment, incremented after this line
str_buffer[str_len] = '\0';
// while the next character is a continuation byte, continue appending
// but if there are too many of them, just stop to avoid overruning str_buffer size.
if ((*(c+1) & 0xC0) == 0x80 && str_len < 4) {
continue;
}
// ok c+1 is not a continuation byte, so we've read in a full codepoint
int id = str_lookup(str_buffer, t->sorted_vocab, t->vocab_size);
if (id != -1) {
// we found this codepoint in vocab, add it as a token
tokens[(*n_tokens)++] = id;
} else {
// byte_fallback encoding: just encode each byte as a token
// +3 is here because the first 3 vocab elements are <unk>, <s>, </s>
// so the individual bytes only start at index 3
for (int i=0; i < str_len; i++) {
tokens[(*n_tokens)++] = (unsigned char)str_buffer[i] + 3;
}
}
str_len = 0; // protect against a sequence of stray UTF8 continuation bytes
}
// merge the best consecutive pair each iteration, according the scores in vocab_scores
while (1) {
float best_score = -1e10;
int best_id = -1;
int best_idx = -1;
for (int i=0; i < (*n_tokens-1); i++) {
// check if we can merge the pair (tokens[i], tokens[i+1])
sprintf(str_buffer, "%s%s", t->vocab[tokens[i]], t->vocab[tokens[i+1]]);
int id = str_lookup(str_buffer, t->sorted_vocab, t->vocab_size);
if (id != -1 && t->vocab_scores[id] > best_score) {
// this merge pair exists in vocab! record its score and position
best_score = t->vocab_scores[id];
best_id = id;
best_idx = i;
}
}
if (best_idx == -1) {
break; // we couldn't find any more pairs to merge, so we're done
}
// merge the consecutive pair (best_idx, best_idx+1) into new token best_id
tokens[best_idx] = best_id;
// delete token at position best_idx+1, shift the entire sequence back 1
for (int i = best_idx+1; i < (*n_tokens-1); i++) {
tokens[i] = tokens[i+1];
}
(*n_tokens)--; // token length decreased
}
// add optional EOS (=2) token, if desired
if (eos) tokens[(*n_tokens)++] = 2;
free(str_buffer);
}
// ----------------------------------------------------------------------------
// The Sampler, which takes logits and returns a sampled token
// sampling can be done in a few ways: greedy argmax, sampling, top-p sampling
typedef struct {
float prob;
int index;
} ProbIndex; // struct used when sorting probabilities during top-p sampling
typedef struct {
int vocab_size;
ProbIndex* probindex; // buffer used in top-p sampling
float temperature;
float topp;
unsigned long long rng_state;
} Sampler;
int sample_argmax(float* probabilities, int n) {
// return the index that has the highest probability
int max_i = 0;
float max_p = probabilities[0];
for (int i = 1; i < n; i++) {
if (probabilities[i] > max_p) {
max_i = i;
max_p = probabilities[i];
}
}
return max_i;
}
int sample_mult(float* probabilities, int n, float coin) {
// sample index from probabilities (they must sum to 1!)
// coin is a random number in [0, 1), usually from random_f32()
float cdf = 0.0f;
for (int i = 0; i < n; i++) {
cdf += probabilities[i];
if (coin < cdf) {
return i;
}
}
return n - 1; // in case of rounding errors
}
int compare(const void* a, const void* b) {
ProbIndex* a_ = (ProbIndex*) a;
ProbIndex* b_ = (ProbIndex*) b;
if (a_->prob > b_->prob) return -1;
if (a_->prob < b_->prob) return 1;
return 0;
}
int sample_topp(float* probabilities, int n, float topp, ProbIndex* probindex, float coin) {
// top-p sampling (or "nucleus sampling") samples from the smallest set of
// tokens that exceed probability topp. This way we never sample tokens that
// have very low probabilities and are less likely to go "off the rails".
// coin is a random number in [0, 1), usually from random_f32()
int n0 = 0;
// quicksort indices in descending order of probabilities
// values smaller than (1 - topp) / (n - 1) cannot be part of the result
// so for efficiency we crop these out as candidates before sorting
const float cutoff = (1.0f - topp) / (n - 1);
for (int i = 0; i < n; i++) {
if (probabilities[i] >= cutoff) {
probindex[n0].index = i;
probindex[n0].prob = probabilities[i];
n0++;
}
}
qsort(probindex, n0, sizeof(ProbIndex), compare);
// truncate the list where cumulative probability exceeds topp
float cumulative_prob = 0.0f;
int last_idx = n0 - 1; // in case of rounding errors consider all elements
for (int i = 0; i < n0; i++) {
cumulative_prob += probindex[i].prob;
if (cumulative_prob > topp) {
last_idx = i;
break; // we've exceeded topp by including last_idx
}
}
// sample from the truncated list
float r = coin * cumulative_prob;
float cdf = 0.0f;
for (int i = 0; i <= last_idx; i++) {
cdf += probindex[i].prob;
if (r < cdf) {
return probindex[i].index;
}
}
return probindex[last_idx].index; // in case of rounding errors
}
void build_sampler(Sampler* sampler, int vocab_size, float temperature, float topp, unsigned long long rng_seed) {
sampler->vocab_size = vocab_size;
sampler->temperature = temperature;
sampler->topp = topp;
sampler->rng_state = rng_seed;
// buffer only used with nucleus sampling; may not need but it's ~small
sampler->probindex = (ProbIndex *)malloc(sampler->vocab_size * sizeof(ProbIndex));
}
void free_sampler(Sampler* sampler) {
free(sampler->probindex);
sampler->probindex = NULL;
}
unsigned int random_u32(unsigned long long *state) {
// xorshift rng: https://en.wikipedia.org/wiki/Xorshift#xorshift.2A
*state ^= *state >> 12;
*state ^= *state << 25;
*state ^= *state >> 27;
return (*state * 0x2545F4914F6CDD1Dull) >> 32;
}
float random_f32(unsigned long long *state) { // random float32 in [0,1)
return (random_u32(state) >> 8) / 16777216.0f;
}
int sample(Sampler* sampler, float* logits) {
// sample the token given the logits and some hyperparameters
int next;
if (sampler->temperature == 0.0f) {
// greedy argmax sampling: take the token with the highest probability
next = sample_argmax(logits, sampler->vocab_size);
} else {
// apply the temperature to the logits
for (int q=0; q<sampler->vocab_size; q++) { logits[q] /= sampler->temperature; }
// apply softmax to the logits to get the probabilities for next token
softmax(logits, sampler->vocab_size);
// flip a (float) coin (this is our source of entropy for sampling)
float coin = random_f32(&sampler->rng_state);
// we sample from this distribution to get the next token
if (sampler->topp <= 0 || sampler->topp >= 1) {
// simply sample from the predicted probability distribution
next = sample_mult(logits, sampler->vocab_size, coin);
} else {
// top-p (nucleus) sampling, clamping the least likely tokens to zero
next = sample_topp(logits, sampler->vocab_size, sampler->topp, sampler->probindex, coin);
}
}
return next;
}
// ----------------------------------------------------------------------------
// utilities: time
long time_in_ms() {
// return time in milliseconds, for benchmarking the model speed
struct timespec time;
clock_gettime(CLOCK_REALTIME, &time);
return time.tv_sec * 1000 + time.tv_nsec / 1000000;
}
// ----------------------------------------------------------------------------
// generation loop
// void generate(Transformer *transformer, Tokenizer *tokenizer, Sampler *sampler, char *prompt, int steps) {
// char *empty_prompt = (char *)"";
// if (prompt == NULL) { prompt = empty_prompt; }
// // encode the (string) prompt into tokens sequence
// int num_prompt_tokens = 0;
// int* prompt_tokens = (int*)malloc((strlen(prompt)+3) * sizeof(int)); // +3 for '\0', ?BOS, ?EOS
// encode(tokenizer, prompt, 1, 0, prompt_tokens, &num_prompt_tokens);
// if (num_prompt_tokens < 1) {
// fprintf(stderr, "something is wrong, expected at least 1 prompt token\n");
// exit(EXIT_FAILURE);
// }
// // start the main loop
// long start = 0; // used to time our code, only initialized after first iteration
// int next; // will store the next token in the sequence
// int token = prompt_tokens[0]; // kick off with the first token in the prompt
// int pos = 0; // position in the sequence
// while (pos < steps) {
// // forward the transformer to get logits for the next token
// float* logits = forward(transformer, token, pos);
// // advance the state machine
// if (pos < num_prompt_tokens - 1) {
// // if we are still processing the input prompt, force the next prompt token
// next = prompt_tokens[pos + 1];
// } else {
// // otherwise sample the next token from the logits
// next = sample(sampler, logits);
// }
// pos++;
// // data-dependent terminating condition: the BOS (=1) token delimits sequences
// if (next == 1) { break; }
// // print the token as string, decode it with the Tokenizer object
// char* piece = decode(tokenizer, token, next);
// safe_printf(piece); // same as printf("%s", piece), but skips "unsafe" bytes
// fflush(stdout);
// token = next;
// // init the timer here because the first iteration can be slower
// if (start == 0) { start = time_in_ms(); }
// }
// printf("\n");
// // report achieved tok/s (pos-1 because the timer starts after first iteration)
// if (pos > 1) {
// long end = time_in_ms();
// fprintf(stderr, "achieved tok/s: %f\n", (pos-1) / (double)(end-start)*1000);
// }
// free(prompt_tokens);
// }
// void read_stdin(const char* guide, char* buffer, size_t bufsize) {
// // read a line from stdin, up to but not including \n
// printf("%s", guide);
// if (fgets(buffer, bufsize, stdin) != NULL) {
// size_t len = strlen(buffer);
// if (len > 0 && buffer[len - 1] == '\n') {
// buffer[len - 1] = '\0'; // strip newline
// }
// }
// }
// // ----------------------------------------------------------------------------
// // chat loop
// // I manually inspected the tokens for a few chat conversations compared to
// // python reference and that seemed ok, but this was not thoroughly tested and
// // is not safely implemented, it's more a proof of concept atm.
// void chat(Transformer *transformer, Tokenizer *tokenizer, Sampler *sampler,
// char *cli_user_prompt, char *cli_system_prompt, int steps) {
// // buffers for reading the system prompt and user prompt from stdin
// // you'll notice they are soomewhat haphazardly and unsafely set atm
// char system_prompt[512];
// char user_prompt[512];
// char rendered_prompt[1152];
// int num_prompt_tokens = 0;
// int* prompt_tokens = (int*)malloc(1152 * sizeof(int));
// int user_idx;
// // start the main loop
// int8_t user_turn = 1; // user starts
// int next; // will store the next token in the sequence
// int token; // stores the current token to feed into the transformer
// int prev_token;
// int pos = 0; // position in the sequence
// while (pos < steps) {
// // when it is the user's turn to contribute tokens to the dialog...
// if (user_turn) {
// // get the (optional) system prompt at position 0
// if (pos == 0) {
// // at position 0, the user can also contribute a system prompt
// if (cli_system_prompt == NULL) {
// // system prompt was not passed in, attempt to get it from stdin
// read_stdin("Enter system prompt (optional): ", system_prompt, sizeof(system_prompt));
// } else {
// // system prompt was passed in, use it
// strcpy(system_prompt, cli_system_prompt);
// }
// }
// // get the user prompt
// if (pos == 0 && cli_user_prompt != NULL) {
// // user prompt for position 0 was passed in, use it
// strcpy(user_prompt, cli_user_prompt);
// } else {
// // otherwise get user prompt from stdin
// read_stdin("User: ", user_prompt, sizeof(user_prompt));
// }
// // render user/system prompts into the Llama 2 Chat schema
// if (pos == 0 && system_prompt[0] != '\0') {
// char system_template[] = "[INST] <<SYS>>\n%s\n<</SYS>>\n\n%s [/INST]";
// sprintf(rendered_prompt, system_template, system_prompt, user_prompt);
// } else {
// char user_template[] = "[INST] %s [/INST]";
// sprintf(rendered_prompt, user_template, user_prompt);
// }
// // encode the rendered prompt into tokens
// encode(tokenizer, rendered_prompt, 1, 0, prompt_tokens, &num_prompt_tokens);
// user_idx = 0; // reset the user index
// user_turn = 0;
// printf("Assistant: ");
// }
// // determine the token to pass into the transformer next
// if (user_idx < num_prompt_tokens) {
// // if we are still processing the input prompt, force the next prompt token
// token = prompt_tokens[user_idx++];
// } else {
// // otherwise use the next token sampled from previous turn
// token = next;
// }
// // EOS (=2) token ends the Assistant turn
// if (token == 2) { user_turn = 1; }
// // forward the transformer to get logits for the next token
// float* logits = forward(transformer, token, pos);
// next = sample(sampler, logits);
// pos++;
// if (user_idx >= num_prompt_tokens && next != 2) {
// // the Assistant is responding, so print its output
// char* piece = decode(tokenizer, token, next);
// safe_printf(piece); // same as printf("%s", piece), but skips "unsafe" bytes
// fflush(stdout);
// }
// if (next == 2) { printf("\n"); }
// }
// printf("\n");
// free(prompt_tokens);
// }
typedef struct {
Transformer transformer;
Tokenizer tokenizer;
Sampler sampler;
int *output; // buffer to store the output tokens(max_tokens + 1)
int output_idx; // current index in the output buffer(0 ... max_tokens - 1)
int gen_idx; // generated tokens(0 ... max_tokens)
int finished;
#ifdef USE_CUDA
cublasHandle_t g_cublas_handle;
#endif
} llama2_ctx;
void *llama2_init(char *model_path, char *tokenizer_path) {
llama2_ctx *ctx = (llama2_ctx *)malloc(sizeof(llama2_ctx));
build_transformer(&ctx->transformer, model_path);
build_tokenizer(&ctx->tokenizer, tokenizer_path, ctx->transformer.config.vocab_size);
ctx->output = NULL;
#ifdef USE_CUDA
cublasStatus_t stat = cublasCreate(&ctx->g_cublas_handle); // FIXME cublasDestroy
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("CUBLAS initialization failed\n");
exit(EXIT_FAILURE);
}
#endif
return ctx;
}
void llama2_free(void *ctx) {
llama2_ctx *c = (llama2_ctx *)ctx;
free_transformer(&c->transformer);
free_tokenizer(&c->tokenizer);
if (c->sampler.probindex != NULL)
free_sampler(&c->sampler);
#ifdef USE_CUDA
cublasStatus_t stat = cublasDestroy(c->g_cublas_handle);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("CUBLAS destroy failed\n");
exit(EXIT_FAILURE);
}
#endif
if (c->output != NULL)
free(c->output);
}
void llama2_generate_loop(llama2_ctx *ctx, int *prompt_tokens, int num_prompt_tokens, int steps, int *output_tokens) {
// printf("generate loop started\n");
// start the main loop
// long start = 0; // used to time our code, only initialized after first iteration
int next; // will store the next token in the sequence
int token = prompt_tokens[0]; // kick off with the first token in the prompt
int pos = 0; // position in the sequence
while (pos < steps) {
// forward the transformer to get logits for the next token
#ifdef USE_CUDA
float* logits = forward(&ctx->transformer, token, pos, ctx->g_cublas_handle);
#else
float* logits = forward(&ctx->transformer, token, pos);
#endif
// advance the state machine
if (pos < num_prompt_tokens - 1) {
// if we are still processing the input prompt, force the next prompt token
next = prompt_tokens[pos + 1];
} else {
// otherwise sample the next token from the logits
next = sample(&ctx->sampler, logits);
}
// printf("current gen idx: %d, %d\n", ctx->gen_idx, next);
if (pos == num_prompt_tokens - 1)
output_tokens[ctx->gen_idx] = token;
if (pos >= num_prompt_tokens - 1)
output_tokens[ctx->gen_idx++ + 1] = next;
pos++;
token = next;
// EOS (=2) token ends the Assistant turn
if (next == 2)
break;
}
// report achieved tok/s (pos-1 because the timer starts after first iteration)
// if (pos > 1) {
// long end = time_in_ms();
// fprintf(stderr, "achieved tok/s: %f\n", (pos-1) / (double)(end-start)*1000);
// }
ctx->finished = 1;
free(prompt_tokens);
free_sampler(&ctx->sampler);
// printf("generate loop finished\n");
}
int llama2_generate(void *ctx, char *prompt, int steps, float temperature, float topp, int seed) {
llama2_ctx *c = (llama2_ctx *)ctx;
build_sampler(&c->sampler, c->transformer.config.vocab_size, temperature, topp, seed);
char *empty_prompt = (char *)"";
if (prompt == NULL) { prompt = empty_prompt; }
// encode the (string) prompt into tokens sequence
int num_prompt_tokens = 0;
int* prompt_tokens = (int*)malloc((strlen(prompt)+3) * sizeof(int)); // +3 for '\0', ?BOS, ?EOS
encode(&c->tokenizer, prompt, 1, 0, prompt_tokens, &num_prompt_tokens);
if (num_prompt_tokens < 1) {
fprintf(stderr, "something is wrong, expected at least 1 prompt token\n");
return 1;
}
if (num_prompt_tokens >= steps) {
fprintf(stderr, "prompt tokens exceeds max token length\n");
return 1;
}
c->output = (int *)malloc((steps + 1) * sizeof(int));
c->gen_idx = 0;
c->output_idx = 0;
c->finished = 0;
std::thread t(llama2_generate_loop, c, prompt_tokens, num_prompt_tokens, steps, c->output);
t.detach();
return 0;
}
char *llama2_get_last(void *ctx) {
llama2_ctx *c = (llama2_ctx *)ctx;
assert(c->output != NULL); // shouldn't be called again after finished
while(!c->finished && c->output_idx >= c->gen_idx) {
// printf("current idx: %d, %d\n", c->output_idx, c->gen_idx);
usleep(100000);
} // wait for next token
if (c->finished && c->output_idx >= c->gen_idx) {
free(c->output);
c->output = NULL;
return NULL;
}
// printf("current idx: %d, %d, finished:%d\n", c->output_idx, c->gen_idx, c->finished);
char *piece = decode(&c->tokenizer, c->output[c->output_idx], c->output[c->output_idx + 1]);
c->output_idx++;
return piece;
}
void llama2_tokenize(void *ctx, char *text, int8_t bos, int8_t eos, int *tokens, int *n_tokens) {
llama2_ctx *c = (llama2_ctx *)ctx;
encode(&c->tokenizer, text, bos, eos, tokens, n_tokens);
}
|