Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,702 Bytes
391bf1a da4f293 391bf1a da4f293 391bf1a da4f293 12b8205 da4f293 391bf1a da4f293 391bf1a e4b0eea fc18a2b 391bf1a da4f293 e328088 12b8205 e328088 391bf1a d78252d 391bf1a fc18a2b 391bf1a da4f293 e328088 12b8205 e328088 391bf1a fc18a2b 9f1456e fc18a2b 391bf1a a41d73e 391bf1a fc18a2b 9f1456e fc18a2b 391bf1a a41d73e 391bf1a fc18a2b 9f1456e fc18a2b 391bf1a a41d73e 391bf1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
MODEL_NAME = "kotoba-tech/kotoba-whisper-v1.0"
BATCH_SIZE = 16
CHUNK_LENGTH_S = 15
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
device = "cuda:0"
model_kwargs = {'attn_implementation': 'sdpa'}
else:
torch_dtype = torch.float32
device = "cpu"
model_kwargs = {}
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=CHUNK_LENGTH_S,
batch_size=BATCH_SIZE,
torch_dtype=torch_dtype,
device=device,
model_kwargs=model_kwargs
)
def transcribe(inputs, prompt):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
generate_kwargs = {"language": "japanese", "task": "transcribe"}
prompt = "γ" if not prompt else prompt
generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
result = pipe(inputs, generate_kwargs=generate_kwargs)["text"]
return result['text'][1 + len(prompt) + 1:]
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
return f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe> </center>'
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(yt_url, prompt, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
generate_kwargs = {"language": "japanese", "task": "transcribe"}
prompt = "γ" if not prompt else prompt
generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
result = pipe(inputs, generate_kwargs=generate_kwargs)["text"]
return html_embed_str, result['text'][1 + len(prompt) + 1:]
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True)
],
outputs="text",
layout="horizontal",
theme="huggingface",
title=f"Transcribe Audio with {os.path.basename(MODEL_NAME)}",
description=f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files of arbitrary length.",
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True)
],
outputs="text",
layout="horizontal",
theme="huggingface",
title=f"Transcribe Audio with {os.path.basename(MODEL_NAME)}",
description=f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files of arbitrary length.",
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True)
],
outputs=["html", "text"],
layout="horizontal",
theme="huggingface",
title=f"Transcribe YouTube with {os.path.basename(MODEL_NAME)}",
description=f"Transcribe long-form YouTube videos with the click of a button! Demo uses Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe video files of arbitrary length.",
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
demo.launch(enable_queue=True)
|