File size: 5,702 Bytes
391bf1a
 
 
 
 
 
 
 
 
 
 
da4f293
 
391bf1a
 
 
da4f293
 
 
 
 
 
 
 
 
391bf1a
 
 
da4f293
12b8205
da4f293
391bf1a
da4f293
391bf1a
 
 
e4b0eea
fc18a2b
391bf1a
 
da4f293
e328088
 
12b8205
e328088
391bf1a
 
 
d78252d
391bf1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc18a2b
391bf1a
 
 
 
 
 
 
 
da4f293
e328088
 
12b8205
e328088
391bf1a
 
 
 
 
fc18a2b
 
9f1456e
fc18a2b
391bf1a
 
 
 
a41d73e
391bf1a
 
 
 
 
fc18a2b
 
9f1456e
fc18a2b
391bf1a
 
 
 
a41d73e
391bf1a
 
 
 
fc18a2b
 
9f1456e
fc18a2b
391bf1a
 
 
a41d73e
 
391bf1a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch

import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

import tempfile
import os

MODEL_NAME = "kotoba-tech/kotoba-whisper-v1.0"
BATCH_SIZE = 16
CHUNK_LENGTH_S = 15
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
    device = "cuda:0"
    model_kwargs = {'attn_implementation': 'sdpa'}
else:
    torch_dtype = torch.float32
    device = "cpu"
    model_kwargs = {}

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=CHUNK_LENGTH_S,
    batch_size=BATCH_SIZE,
    torch_dtype=torch_dtype,
    device=device,
    model_kwargs=model_kwargs
)



def transcribe(inputs, prompt):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
    generate_kwargs = {"language": "japanese", "task": "transcribe"}
    prompt = "。" if not prompt else prompt
    generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
    result = pipe(inputs, generate_kwargs=generate_kwargs)["text"]
    return result['text'][1 + len(prompt) + 1:] 

def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    return f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe> </center>'

def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


def yt_transcribe(yt_url, prompt, max_filesize=75.0):
    html_embed_str = _return_yt_html_embed(yt_url)
    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()
    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
    generate_kwargs = {"language": "japanese", "task": "transcribe"}
    prompt = "。" if not prompt else prompt
    generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
    result = pipe(inputs, generate_kwargs=generate_kwargs)["text"]
    return html_embed_str, result['text'][1 + len(prompt) + 1:] 


demo = gr.Blocks()
mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath", optional=True),
        gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True)
    ],
    outputs="text",
    layout="horizontal",
    theme="huggingface",
    title=f"Transcribe Audio with {os.path.basename(MODEL_NAME)}",
    description=f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe audio files of arbitrary length.",
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
        gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True)
    ],
    outputs="text",
    layout="horizontal",
    theme="huggingface",
    title=f"Transcribe Audio with {os.path.basename(MODEL_NAME)}",
    description=f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe audio files of arbitrary length.",
    allow_flagging="never",
)
yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
        gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True)
    ],
    outputs=["html", "text"],
    layout="horizontal",
    theme="huggingface",
    title=f"Transcribe YouTube with {os.path.basename(MODEL_NAME)}",
    description=f"Transcribe long-form YouTube videos with the click of a button! Demo uses Kotoba-Whisper checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe video files of arbitrary length.",
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])

demo.launch(enable_queue=True)