Update app.py
Browse files
app.py
CHANGED
@@ -265,6 +265,7 @@ import gradio as gr
|
|
265 |
import torch
|
266 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
267 |
import os
|
|
|
268 |
from threading import Thread
|
269 |
|
270 |
import langchain
|
@@ -345,6 +346,7 @@ retriever = vectordb.as_retriever(search_type="similarity", search_kwargs={"k":
|
|
345 |
def process_llm_response(llm_response):
|
346 |
ans = textwrap.fill(llm_response['result'], width=1500)
|
347 |
sources_used = ' \n'.join([f"{source.metadata['source'].split('/')[-1][:-4]} - page: {str(source.metadata['page'])}" for source in llm_response['source_documents']])
|
|
|
348 |
return f"{ans}\n\nSources:\n{sources_used}"
|
349 |
|
350 |
|
@@ -352,7 +354,8 @@ def process_llm_response(llm_response):
|
|
352 |
|
353 |
|
354 |
|
355 |
-
|
|
|
356 |
def llm_ans(message, history):
|
357 |
tok, model = build_model()
|
358 |
terminators = [tok.eos_token_id, 32007, 32011, 32001, 32000]
|
|
|
265 |
import torch
|
266 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
267 |
import os
|
268 |
+
import spaces
|
269 |
from threading import Thread
|
270 |
|
271 |
import langchain
|
|
|
346 |
def process_llm_response(llm_response):
|
347 |
ans = textwrap.fill(llm_response['result'], width=1500)
|
348 |
sources_used = ' \n'.join([f"{source.metadata['source'].split('/')[-1][:-4]} - page: {str(source.metadata['page'])}" for source in llm_response['source_documents']])
|
349 |
+
|
350 |
return f"{ans}\n\nSources:\n{sources_used}"
|
351 |
|
352 |
|
|
|
354 |
|
355 |
|
356 |
|
357 |
+
|
358 |
+
@spaces.GPU(duration=60)
|
359 |
def llm_ans(message, history):
|
360 |
tok, model = build_model()
|
361 |
terminators = [tok.eos_token_id, 32007, 32011, 32001, 32000]
|