jingyaogong commited on
Commit
a90a5a4
·
1 Parent(s): a551d94

update space

Browse files
MiniMind2-R1/LMConfig.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from typing import List
3
+
4
+
5
+ class LMConfig(PretrainedConfig):
6
+ model_type = "minimind"
7
+
8
+ def __init__(
9
+ self,
10
+ dim: int = 512,
11
+ n_layers: int = 8,
12
+ n_heads: int = 8,
13
+ n_kv_heads: int = 2,
14
+ vocab_size: int = 6400,
15
+ hidden_dim: int = None,
16
+ multiple_of: int = 64,
17
+ norm_eps: float = 1e-5,
18
+ max_seq_len: int = 8192,
19
+ rope_theta: int = 1e6,
20
+ dropout: float = 0.0,
21
+ flash_attn: bool = True,
22
+ ####################################################
23
+ # Here are the specific configurations of MOE
24
+ # When use_moe is false, the following is invalid
25
+ ####################################################
26
+ use_moe: bool = False,
27
+ ####################################################
28
+ num_experts_per_tok: int = 2,
29
+ n_routed_experts: int = 4,
30
+ n_shared_experts: bool = True,
31
+ scoring_func: str = 'softmax',
32
+ aux_loss_alpha: float = 0.1,
33
+ seq_aux: bool = True,
34
+ norm_topk_prob: bool = True,
35
+ **kwargs,
36
+ ):
37
+ self.dim = dim
38
+ self.n_layers = n_layers
39
+ self.n_heads = n_heads
40
+ self.n_kv_heads = n_kv_heads
41
+ self.vocab_size = vocab_size
42
+ self.hidden_dim = hidden_dim
43
+ self.multiple_of = multiple_of
44
+ self.norm_eps = norm_eps
45
+ self.max_seq_len = max_seq_len
46
+ self.rope_theta = rope_theta
47
+ self.dropout = dropout
48
+ self.flash_attn = flash_attn
49
+ ####################################################
50
+ # Here are the specific configurations of MOE
51
+ # When use_moe is false, the following is invalid
52
+ ####################################################
53
+ self.use_moe = use_moe
54
+ self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量
55
+ self.n_routed_experts = n_routed_experts # 总的专家数量
56
+ self.n_shared_experts = n_shared_experts # 共享专家
57
+ self.scoring_func = scoring_func # 评分函数,默认为'softmax'
58
+ self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数
59
+ self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失
60
+ self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率
61
+ super().__init__(**kwargs)
MiniMind2-R1/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MiniMindLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "LMConfig.LMConfig",
7
+ "AutoModelForCausalLM": "model.MiniMindLM"
8
+ },
9
+ "aux_loss_alpha": 0.1,
10
+ "dim": 768,
11
+ "dropout": 0.0,
12
+ "flash_attn": true,
13
+ "hidden_dim": 2048,
14
+ "max_seq_len": 8192,
15
+ "model_type": "minimind",
16
+ "multiple_of": 64,
17
+ "n_heads": 8,
18
+ "n_kv_heads": 2,
19
+ "n_layers": 16,
20
+ "n_routed_experts": 4,
21
+ "n_shared_experts": true,
22
+ "norm_eps": 1e-05,
23
+ "norm_topk_prob": true,
24
+ "num_experts_per_tok": 2,
25
+ "rope_theta": 1000000.0,
26
+ "scoring_func": "softmax",
27
+ "seq_aux": true,
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.44.0",
30
+ "use_moe": false,
31
+ "vocab_size": 6400
32
+ }
MiniMind2-R1/generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.44.0"
4
+ }
MiniMind2-R1/model.py ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import struct
3
+ import inspect
4
+ import time
5
+
6
+ from .LMConfig import LMConfig
7
+ from typing import Any, Optional, Tuple, List
8
+ import numpy as np
9
+ import torch
10
+ import torch.nn.functional as F
11
+ from torch import nn
12
+ from transformers import PreTrainedModel
13
+ from transformers.modeling_outputs import CausalLMOutputWithPast
14
+
15
+
16
+ class RMSNorm(torch.nn.Module):
17
+ def __init__(self, dim: int, eps: float):
18
+ super().__init__()
19
+ self.eps = eps
20
+ self.weight = nn.Parameter(torch.ones(dim))
21
+
22
+ def forward(self, x):
23
+ return self.weight * (x.float() * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)).type_as(x)
24
+
25
+
26
+ def precompute_pos_cis(dim: int, end: int, theta: float = 1e4):
27
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
28
+ t = torch.arange(end, device=freqs.device) # type: ignore
29
+ freqs = torch.outer(t, freqs).float() # type: ignore
30
+ pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
31
+ return pos_cis
32
+
33
+
34
+ def apply_rotary_emb(xq, xk, pos_cis):
35
+ def unite_shape(pos_cis, x):
36
+ ndim = x.ndim
37
+ assert 0 <= 1 < ndim
38
+ assert pos_cis.shape == (x.shape[1], x.shape[-1])
39
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
40
+ return pos_cis.view(*shape)
41
+
42
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
43
+ xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
44
+ pos_cis = unite_shape(pos_cis, xq_)
45
+ xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3)
46
+ xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
47
+ return xq_out.type_as(xq), xk_out.type_as(xk)
48
+
49
+
50
+ def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
51
+ """torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
52
+ bs, slen, n_kv_heads, head_dim = x.shape
53
+ if n_rep == 1:
54
+ return x
55
+ return (
56
+ x[:, :, :, None, :]
57
+ .expand(bs, slen, n_kv_heads, n_rep, head_dim)
58
+ .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
59
+ )
60
+
61
+
62
+ class Attention(nn.Module):
63
+ def __init__(self, args: LMConfig):
64
+ super().__init__()
65
+ self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
66
+ assert args.n_heads % self.n_kv_heads == 0
67
+ self.n_local_heads = args.n_heads
68
+ self.n_local_kv_heads = self.n_kv_heads
69
+ self.n_rep = self.n_local_heads // self.n_local_kv_heads
70
+ self.head_dim = args.dim // args.n_heads
71
+ self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
72
+ self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
73
+ self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
74
+ self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
75
+ self.attn_dropout = nn.Dropout(args.dropout)
76
+ self.resid_dropout = nn.Dropout(args.dropout)
77
+ self.dropout = args.dropout
78
+ self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
79
+ # print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
80
+ mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
81
+ mask = torch.triu(mask, diagonal=1)
82
+ self.register_buffer("mask", mask, persistent=False)
83
+
84
+ def forward(self,
85
+ x: torch.Tensor,
86
+ pos_cis: torch.Tensor,
87
+ past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
88
+ use_cache=False):
89
+ bsz, seq_len, _ = x.shape
90
+ xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
91
+ xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
92
+ xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
93
+ xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
94
+
95
+ xq, xk = apply_rotary_emb(xq, xk, pos_cis)
96
+ # kv_cache实现
97
+ if past_key_value is not None:
98
+ xk = torch.cat([past_key_value[0], xk], dim=1)
99
+ xv = torch.cat([past_key_value[1], xv], dim=1)
100
+ past_kv = (xk, xv) if use_cache else None
101
+
102
+ xq, xk, xv = (
103
+ xq.transpose(1, 2),
104
+ repeat_kv(xk, self.n_rep).transpose(1, 2),
105
+ repeat_kv(xv, self.n_rep).transpose(1, 2)
106
+ )
107
+ if self.flash and seq_len != 1:
108
+ dropout_p = self.dropout if self.training else 0.0
109
+ output = F.scaled_dot_product_attention(
110
+ xq, xk, xv,
111
+ attn_mask=None,
112
+ dropout_p=dropout_p,
113
+ is_causal=True
114
+ )
115
+ else:
116
+ scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
117
+ scores += self.mask[:, :, :seq_len, :seq_len]
118
+ scores = F.softmax(scores.float(), dim=-1).type_as(xq)
119
+ scores = self.attn_dropout(scores)
120
+ output = scores @ xv
121
+
122
+ output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
123
+ output = self.resid_dropout(self.wo(output))
124
+ return output, past_kv
125
+
126
+
127
+ class FeedForward(nn.Module):
128
+ def __init__(self, config: LMConfig):
129
+ super().__init__()
130
+ if config.hidden_dim is None:
131
+ hidden_dim = 4 * config.dim
132
+ hidden_dim = int(2 * hidden_dim / 3)
133
+ config.hidden_dim = config.multiple_of * ((hidden_dim + config.multiple_of - 1) // config.multiple_of)
134
+ self.w1 = nn.Linear(config.dim, config.hidden_dim, bias=False)
135
+ self.w2 = nn.Linear(config.hidden_dim, config.dim, bias=False)
136
+ self.w3 = nn.Linear(config.dim, config.hidden_dim, bias=False)
137
+ self.dropout = nn.Dropout(config.dropout)
138
+
139
+ def forward(self, x):
140
+ return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
141
+
142
+
143
+ class MoEGate(nn.Module):
144
+ def __init__(self, config: LMConfig):
145
+ super().__init__()
146
+ self.config = config
147
+ self.top_k = config.num_experts_per_tok
148
+ self.n_routed_experts = config.n_routed_experts
149
+
150
+ self.scoring_func = config.scoring_func
151
+ self.alpha = config.aux_loss_alpha
152
+ self.seq_aux = config.seq_aux
153
+
154
+ self.norm_topk_prob = config.norm_topk_prob
155
+ self.gating_dim = config.dim
156
+ self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
157
+ self.reset_parameters()
158
+
159
+ def reset_parameters(self) -> None:
160
+ import torch.nn.init as init
161
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
162
+
163
+ def forward(self, hidden_states):
164
+ bsz, seq_len, h = hidden_states.shape
165
+ hidden_states = hidden_states.view(-1, h)
166
+ logits = F.linear(hidden_states, self.weight, None)
167
+ if self.scoring_func == 'softmax':
168
+ scores = logits.softmax(dim=-1)
169
+ else:
170
+ raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
171
+
172
+ topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
173
+
174
+ if self.top_k > 1 and self.norm_topk_prob:
175
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
176
+ topk_weight = topk_weight / denominator
177
+
178
+ if self.training and self.alpha > 0.0:
179
+ scores_for_aux = scores
180
+ aux_topk = self.top_k
181
+ topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
182
+ if self.seq_aux:
183
+ scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
184
+ ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
185
+ ce.scatter_add_(1, topk_idx_for_aux_loss,
186
+ torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
187
+ seq_len * aux_topk / self.n_routed_experts)
188
+ aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
189
+ else:
190
+ mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
191
+ ce = mask_ce.float().mean(0)
192
+ Pi = scores_for_aux.mean(0)
193
+ fi = ce * self.n_routed_experts
194
+ aux_loss = (Pi * fi).sum() * self.alpha
195
+ else:
196
+ aux_loss = 0
197
+ return topk_idx, topk_weight, aux_loss
198
+
199
+
200
+ class MOEFeedForward(nn.Module):
201
+ def __init__(self, config: LMConfig):
202
+ super().__init__()
203
+ self.config = config
204
+ self.experts = nn.ModuleList([
205
+ FeedForward(config)
206
+ for _ in range(config.n_routed_experts)
207
+ ])
208
+ self.gate = MoEGate(config)
209
+ if config.n_shared_experts is not None:
210
+ self.shared_experts = FeedForward(config)
211
+
212
+ def forward(self, x):
213
+ identity = x
214
+ orig_shape = x.shape
215
+ bsz, seq_len, _ = x.shape
216
+ # 使用门控机制选择专家
217
+ topk_idx, topk_weight, aux_loss = self.gate(x)
218
+ x = x.view(-1, x.shape[-1])
219
+ flat_topk_idx = topk_idx.view(-1)
220
+ if self.training:
221
+ # 训练模式下,重复输入数据
222
+ x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
223
+ y = torch.empty_like(x, dtype=torch.float16)
224
+ for i, expert in enumerate(self.experts):
225
+ y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(y.dtype) # 确保类型一致
226
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
227
+ y = y.view(*orig_shape)
228
+ else:
229
+ # 推理模式下,只选择最优专家
230
+ y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
231
+ if self.config.n_shared_experts is not None:
232
+ y = y + self.shared_experts(identity)
233
+ self.aux_loss = aux_loss
234
+ return y
235
+
236
+ @torch.no_grad()
237
+ def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
238
+ expert_cache = torch.zeros_like(x)
239
+ idxs = flat_expert_indices.argsort()
240
+ tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
241
+ token_idxs = idxs // self.config.num_experts_per_tok
242
+ # 例如当tokens_per_expert=[6, 15, 20, 26, 33, 38, 46, 52]
243
+ # 当token_idxs=[3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...]
244
+ # 意味着当token_idxs[:6] -> [3, 7, 19, 21, 24, 25, 4]位置的token都由专家0处理,token_idxs[6:15]位置的token都由专家1处理......
245
+ for i, end_idx in enumerate(tokens_per_expert):
246
+ start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
247
+ if start_idx == end_idx:
248
+ continue
249
+ expert = self.experts[i]
250
+ exp_token_idx = token_idxs[start_idx:end_idx]
251
+ expert_tokens = x[exp_token_idx]
252
+ expert_out = expert(expert_tokens).to(expert_cache.dtype)
253
+ expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
254
+ # 使用 scatter_add_ 进行 sum 操作
255
+ expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
256
+
257
+ return expert_cache
258
+
259
+
260
+ class MiniMindBlock(nn.Module):
261
+ def __init__(self, layer_id: int, config: LMConfig):
262
+ super().__init__()
263
+ self.n_heads = config.n_heads
264
+ self.dim = config.dim
265
+ self.head_dim = config.dim // config.n_heads
266
+ self.attention = Attention(config)
267
+
268
+ self.layer_id = layer_id
269
+ self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
270
+ self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
271
+ self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
272
+
273
+ def forward(self, x, pos_cis, past_key_value=None, use_cache=False):
274
+ h_attn, past_kv = self.attention(
275
+ self.attention_norm(x),
276
+ pos_cis,
277
+ past_key_value=past_key_value,
278
+ use_cache=use_cache
279
+ )
280
+ h = x + h_attn
281
+ out = h + self.feed_forward(self.ffn_norm(h))
282
+ return out, past_kv
283
+
284
+
285
+ class MiniMindLM(PreTrainedModel):
286
+ config_class = LMConfig
287
+
288
+ def __init__(self, params: LMConfig = None):
289
+ self.params = params or LMConfig()
290
+ super().__init__(self.params)
291
+ self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
292
+ self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
293
+ self.dropout = nn.Dropout(params.dropout)
294
+ self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
295
+ self.norm = RMSNorm(params.dim, eps=params.norm_eps)
296
+ self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
297
+ self.tok_embeddings.weight = self.output.weight
298
+ self.register_buffer("pos_cis", precompute_pos_cis(params.dim // params.n_heads, params.max_seq_len,
299
+ theta=params.rope_theta), persistent=False)
300
+ self.OUT = CausalLMOutputWithPast()
301
+
302
+ def forward(self,
303
+ input_ids: Optional[torch.Tensor] = None,
304
+ past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
305
+ use_cache: bool = False,
306
+ **args):
307
+ past_key_values = past_key_values or [None] * len(self.layers)
308
+ start_pos = args.get('start_pos', 0)
309
+ h = self.dropout(self.tok_embeddings(input_ids))
310
+ pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
311
+ past_kvs = []
312
+ for l, layer in enumerate(self.layers):
313
+ h, past_kv = layer(
314
+ h, pos_cis,
315
+ past_key_value=past_key_values[l],
316
+ use_cache=use_cache
317
+ )
318
+ past_kvs.append(past_kv)
319
+ logits = self.output(self.norm(h))
320
+ aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
321
+ self.OUT.__setitem__('logits', logits)
322
+ self.OUT.__setitem__('aux_loss', aux_loss)
323
+ self.OUT.__setitem__('past_key_values', past_kvs)
324
+ return self.OUT
325
+
326
+ @torch.inference_mode()
327
+ def generate(self, input_ids, eos_token_id=2, max_new_tokens=1024, temperature=0.75, top_p=0.90,
328
+ stream=False, rp=1., use_cache=True, pad_token_id=0, **args):
329
+ # 流式生成
330
+ if stream:
331
+ return self._generate_stream(input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache)
332
+
333
+ # 直接生成
334
+ generated = []
335
+ for i in range(input_ids.size(0)):
336
+ non_pad = input_ids[i][input_ids[i] != pad_token_id].unsqueeze(0)
337
+ out = self._generate_stream(non_pad, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache)
338
+ tokens_list = [tokens[:, -1:] for tokens in out]
339
+ gen = torch.cat(tokens_list, dim=-1) if tokens_list else non_pad
340
+ full_sequence = torch.cat([non_pad, gen], dim=-1)
341
+ generated.append(full_sequence)
342
+ max_length = max(seq.size(1) for seq in generated)
343
+ generated = [
344
+ torch.cat(
345
+ [seq, torch.full((1, max_length - seq.size(1)), pad_token_id, dtype=seq.dtype, device=seq.device)],
346
+ dim=-1)
347
+ for seq in generated
348
+ ]
349
+ return torch.cat(generated, dim=0)
350
+
351
+ def _generate_stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache, **args):
352
+ start, first_seq, past_kvs = input_ids.shape[1], True, None
353
+ while input_ids.shape[1] < max_new_tokens - 1:
354
+ if first_seq or not use_cache:
355
+ out, first_seq = self(input_ids, past_key_values=past_kvs, use_cache=use_cache), False
356
+ else:
357
+ out = self(input_ids[:, -1:], past_key_values=past_kvs, use_cache=use_cache,
358
+ start_pos=input_ids.shape[1] - 1)
359
+ logits, past_kvs = out.logits[:, -1, :], out.past_key_values
360
+ logits[:, list(set(input_ids.tolist()[0]))] /= rp
361
+ logits /= (temperature + 1e-9)
362
+ if top_p is not None and top_p < 1.0:
363
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
364
+ sorted_probs = F.softmax(sorted_logits, dim=-1)
365
+ cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
366
+ sorted_indices_to_remove = cumulative_probs > top_p
367
+ sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
368
+ sorted_indices_to_remove[:, 0] = False
369
+ indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
370
+ logits[indices_to_remove] = -float('Inf')
371
+ input_ids_next = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
372
+ input_ids = torch.cat((input_ids, input_ids_next), dim=1)
373
+ yield input_ids[:, start:]
374
+ if input_ids_next.item() == eos_token_id:
375
+ break
MiniMind2-R1/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6023c329a68fab023195a61d53bb0d642eedba94a5f70ee24d139204e127351
3
+ size 416170002
MiniMind2-R1/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
MiniMind2-R1/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
MiniMind2-R1/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [],
32
+ "bos_token": "<s>",
33
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{{ '<s>system\\n' + system_message + '</s>\\n' }}{% else %}{{ '<s>system\\n你是 MiniMind,是一个有用的人工智能助手。</s>\\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<s>user\\n' + content + '</s>\\n<s>assistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' + '\\n' }}{% endif %}{% endfor %}",
34
+ "clean_up_tokenization_spaces": false,
35
+ "eos_token": "</s>",
36
+ "legacy": true,
37
+ "model_max_length": 32768,
38
+ "pad_token": "<unk>",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "PreTrainedTokenizerFast",
42
+ "unk_token": "<unk>"
43
+ }
MiniMind2/LMConfig.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from typing import List
3
+
4
+
5
+ class LMConfig(PretrainedConfig):
6
+ model_type = "minimind"
7
+
8
+ def __init__(
9
+ self,
10
+ dim: int = 512,
11
+ n_layers: int = 8,
12
+ n_heads: int = 8,
13
+ n_kv_heads: int = 2,
14
+ vocab_size: int = 6400,
15
+ hidden_dim: int = None,
16
+ multiple_of: int = 64,
17
+ norm_eps: float = 1e-5,
18
+ max_seq_len: int = 8192,
19
+ rope_theta: int = 1e6,
20
+ dropout: float = 0.0,
21
+ flash_attn: bool = True,
22
+ ####################################################
23
+ # Here are the specific configurations of MOE
24
+ # When use_moe is false, the following is invalid
25
+ ####################################################
26
+ use_moe: bool = False,
27
+ ####################################################
28
+ num_experts_per_tok: int = 2,
29
+ n_routed_experts: int = 4,
30
+ n_shared_experts: bool = True,
31
+ scoring_func: str = 'softmax',
32
+ aux_loss_alpha: float = 0.1,
33
+ seq_aux: bool = True,
34
+ norm_topk_prob: bool = True,
35
+ **kwargs,
36
+ ):
37
+ self.dim = dim
38
+ self.n_layers = n_layers
39
+ self.n_heads = n_heads
40
+ self.n_kv_heads = n_kv_heads
41
+ self.vocab_size = vocab_size
42
+ self.hidden_dim = hidden_dim
43
+ self.multiple_of = multiple_of
44
+ self.norm_eps = norm_eps
45
+ self.max_seq_len = max_seq_len
46
+ self.rope_theta = rope_theta
47
+ self.dropout = dropout
48
+ self.flash_attn = flash_attn
49
+ ####################################################
50
+ # Here are the specific configurations of MOE
51
+ # When use_moe is false, the following is invalid
52
+ ####################################################
53
+ self.use_moe = use_moe
54
+ self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量
55
+ self.n_routed_experts = n_routed_experts # 总的专家数量
56
+ self.n_shared_experts = n_shared_experts # 共享专家
57
+ self.scoring_func = scoring_func # 评分函数,默认为'softmax'
58
+ self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数
59
+ self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失
60
+ self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率
61
+ super().__init__(**kwargs)
MiniMind2/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MiniMindLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "LMConfig.LMConfig",
7
+ "AutoModelForCausalLM": "model.MiniMindLM"
8
+ },
9
+ "aux_loss_alpha": 0.1,
10
+ "dim": 768,
11
+ "dropout": 0.0,
12
+ "flash_attn": true,
13
+ "hidden_dim": 2048,
14
+ "max_seq_len": 8192,
15
+ "model_type": "minimind",
16
+ "multiple_of": 64,
17
+ "n_heads": 8,
18
+ "n_kv_heads": 2,
19
+ "n_layers": 16,
20
+ "n_routed_experts": 4,
21
+ "n_shared_experts": true,
22
+ "norm_eps": 1e-05,
23
+ "norm_topk_prob": true,
24
+ "num_experts_per_tok": 2,
25
+ "rope_theta": 1000000.0,
26
+ "scoring_func": "softmax",
27
+ "seq_aux": true,
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.47.1",
30
+ "use_moe": false,
31
+ "vocab_size": 6400
32
+ }
MiniMind2/generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.47.1"
4
+ }
MiniMind2/model.py ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import struct
3
+ import inspect
4
+ import time
5
+
6
+ from .LMConfig import LMConfig
7
+ from typing import Any, Optional, Tuple, List
8
+ import numpy as np
9
+ import torch
10
+ import torch.nn.functional as F
11
+ from torch import nn
12
+ from transformers import PreTrainedModel
13
+ from transformers.modeling_outputs import CausalLMOutputWithPast
14
+
15
+
16
+ class RMSNorm(torch.nn.Module):
17
+ def __init__(self, dim: int, eps: float):
18
+ super().__init__()
19
+ self.eps = eps
20
+ self.weight = nn.Parameter(torch.ones(dim))
21
+
22
+ def forward(self, x):
23
+ return self.weight * (x.float() * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)).type_as(x)
24
+
25
+
26
+ def precompute_pos_cis(dim: int, end: int, theta: float = 1e4):
27
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
28
+ t = torch.arange(end, device=freqs.device) # type: ignore
29
+ freqs = torch.outer(t, freqs).float() # type: ignore
30
+ pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
31
+ return pos_cis
32
+
33
+
34
+ def apply_rotary_emb(xq, xk, pos_cis):
35
+ def unite_shape(pos_cis, x):
36
+ ndim = x.ndim
37
+ assert 0 <= 1 < ndim
38
+ assert pos_cis.shape == (x.shape[1], x.shape[-1])
39
+ shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
40
+ return pos_cis.view(*shape)
41
+
42
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
43
+ xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
44
+ pos_cis = unite_shape(pos_cis, xq_)
45
+ xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3)
46
+ xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
47
+ return xq_out.type_as(xq), xk_out.type_as(xk)
48
+
49
+
50
+ def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
51
+ """torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
52
+ bs, slen, n_kv_heads, head_dim = x.shape
53
+ if n_rep == 1:
54
+ return x
55
+ return (
56
+ x[:, :, :, None, :]
57
+ .expand(bs, slen, n_kv_heads, n_rep, head_dim)
58
+ .reshape(bs, slen, n_kv_heads * n_rep, head_dim)
59
+ )
60
+
61
+
62
+ class Attention(nn.Module):
63
+ def __init__(self, args: LMConfig):
64
+ super().__init__()
65
+ self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
66
+ assert args.n_heads % self.n_kv_heads == 0
67
+ self.n_local_heads = args.n_heads
68
+ self.n_local_kv_heads = self.n_kv_heads
69
+ self.n_rep = self.n_local_heads // self.n_local_kv_heads
70
+ self.head_dim = args.dim // args.n_heads
71
+ self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
72
+ self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
73
+ self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
74
+ self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
75
+ self.attn_dropout = nn.Dropout(args.dropout)
76
+ self.resid_dropout = nn.Dropout(args.dropout)
77
+ self.dropout = args.dropout
78
+ self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
79
+ # print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
80
+ mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
81
+ mask = torch.triu(mask, diagonal=1)
82
+ self.register_buffer("mask", mask, persistent=False)
83
+
84
+ def forward(self,
85
+ x: torch.Tensor,
86
+ pos_cis: torch.Tensor,
87
+ past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
88
+ use_cache=False):
89
+ bsz, seq_len, _ = x.shape
90
+ xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
91
+ xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
92
+ xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
93
+ xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
94
+
95
+ xq, xk = apply_rotary_emb(xq, xk, pos_cis)
96
+ # kv_cache实现
97
+ if past_key_value is not None:
98
+ xk = torch.cat([past_key_value[0], xk], dim=1)
99
+ xv = torch.cat([past_key_value[1], xv], dim=1)
100
+ past_kv = (xk, xv) if use_cache else None
101
+
102
+ xq, xk, xv = (
103
+ xq.transpose(1, 2),
104
+ repeat_kv(xk, self.n_rep).transpose(1, 2),
105
+ repeat_kv(xv, self.n_rep).transpose(1, 2)
106
+ )
107
+ if self.flash and seq_len != 1:
108
+ dropout_p = self.dropout if self.training else 0.0
109
+ output = F.scaled_dot_product_attention(
110
+ xq, xk, xv,
111
+ attn_mask=None,
112
+ dropout_p=dropout_p,
113
+ is_causal=True
114
+ )
115
+ else:
116
+ scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
117
+ scores += self.mask[:, :, :seq_len, :seq_len]
118
+ scores = F.softmax(scores.float(), dim=-1).type_as(xq)
119
+ scores = self.attn_dropout(scores)
120
+ output = scores @ xv
121
+
122
+ output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
123
+ output = self.resid_dropout(self.wo(output))
124
+ return output, past_kv
125
+
126
+
127
+ class FeedForward(nn.Module):
128
+ def __init__(self, config: LMConfig):
129
+ super().__init__()
130
+ if config.hidden_dim is None:
131
+ hidden_dim = 4 * config.dim
132
+ hidden_dim = int(2 * hidden_dim / 3)
133
+ config.hidden_dim = config.multiple_of * ((hidden_dim + config.multiple_of - 1) // config.multiple_of)
134
+ self.w1 = nn.Linear(config.dim, config.hidden_dim, bias=False)
135
+ self.w2 = nn.Linear(config.hidden_dim, config.dim, bias=False)
136
+ self.w3 = nn.Linear(config.dim, config.hidden_dim, bias=False)
137
+ self.dropout = nn.Dropout(config.dropout)
138
+
139
+ def forward(self, x):
140
+ return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
141
+
142
+
143
+ class MoEGate(nn.Module):
144
+ def __init__(self, config: LMConfig):
145
+ super().__init__()
146
+ self.config = config
147
+ self.top_k = config.num_experts_per_tok
148
+ self.n_routed_experts = config.n_routed_experts
149
+
150
+ self.scoring_func = config.scoring_func
151
+ self.alpha = config.aux_loss_alpha
152
+ self.seq_aux = config.seq_aux
153
+
154
+ self.norm_topk_prob = config.norm_topk_prob
155
+ self.gating_dim = config.dim
156
+ self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
157
+ self.reset_parameters()
158
+
159
+ def reset_parameters(self) -> None:
160
+ import torch.nn.init as init
161
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
162
+
163
+ def forward(self, hidden_states):
164
+ bsz, seq_len, h = hidden_states.shape
165
+ hidden_states = hidden_states.view(-1, h)
166
+ logits = F.linear(hidden_states, self.weight, None)
167
+ if self.scoring_func == 'softmax':
168
+ scores = logits.softmax(dim=-1)
169
+ else:
170
+ raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
171
+
172
+ topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
173
+
174
+ if self.top_k > 1 and self.norm_topk_prob:
175
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
176
+ topk_weight = topk_weight / denominator
177
+
178
+ if self.training and self.alpha > 0.0:
179
+ scores_for_aux = scores
180
+ aux_topk = self.top_k
181
+ topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
182
+ if self.seq_aux:
183
+ scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
184
+ ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
185
+ ce.scatter_add_(1, topk_idx_for_aux_loss,
186
+ torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
187
+ seq_len * aux_topk / self.n_routed_experts)
188
+ aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
189
+ else:
190
+ mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
191
+ ce = mask_ce.float().mean(0)
192
+ Pi = scores_for_aux.mean(0)
193
+ fi = ce * self.n_routed_experts
194
+ aux_loss = (Pi * fi).sum() * self.alpha
195
+ else:
196
+ aux_loss = 0
197
+ return topk_idx, topk_weight, aux_loss
198
+
199
+
200
+ class MOEFeedForward(nn.Module):
201
+ def __init__(self, config: LMConfig):
202
+ super().__init__()
203
+ self.config = config
204
+ self.experts = nn.ModuleList([
205
+ FeedForward(config)
206
+ for _ in range(config.n_routed_experts)
207
+ ])
208
+ self.gate = MoEGate(config)
209
+ if config.n_shared_experts is not None:
210
+ self.shared_experts = FeedForward(config)
211
+
212
+ def forward(self, x):
213
+ identity = x
214
+ orig_shape = x.shape
215
+ bsz, seq_len, _ = x.shape
216
+ # 使用门控机制选择专家
217
+ topk_idx, topk_weight, aux_loss = self.gate(x)
218
+ x = x.view(-1, x.shape[-1])
219
+ flat_topk_idx = topk_idx.view(-1)
220
+ if self.training:
221
+ # 训练模式下,重复输入数据
222
+ x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
223
+ y = torch.empty_like(x, dtype=torch.float16)
224
+ for i, expert in enumerate(self.experts):
225
+ y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(y.dtype) # 确保类型一致
226
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
227
+ y = y.view(*orig_shape)
228
+ else:
229
+ # 推理模式下,只选择最优专家
230
+ y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
231
+ if self.config.n_shared_experts is not None:
232
+ y = y + self.shared_experts(identity)
233
+ self.aux_loss = aux_loss
234
+ return y
235
+
236
+ @torch.no_grad()
237
+ def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
238
+ expert_cache = torch.zeros_like(x)
239
+ idxs = flat_expert_indices.argsort()
240
+ tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
241
+ token_idxs = idxs // self.config.num_experts_per_tok
242
+ # 例如当tokens_per_expert=[6, 15, 20, 26, 33, 38, 46, 52]
243
+ # 当token_idxs=[3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...]
244
+ # 意味着当token_idxs[:6] -> [3, 7, 19, 21, 24, 25, 4]位置的token都由专家0处理,token_idxs[6:15]位置的token都由专家1处理......
245
+ for i, end_idx in enumerate(tokens_per_expert):
246
+ start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
247
+ if start_idx == end_idx:
248
+ continue
249
+ expert = self.experts[i]
250
+ exp_token_idx = token_idxs[start_idx:end_idx]
251
+ expert_tokens = x[exp_token_idx]
252
+ expert_out = expert(expert_tokens).to(expert_cache.dtype)
253
+ expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
254
+ # 使用 scatter_add_ 进行 sum 操作
255
+ expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
256
+
257
+ return expert_cache
258
+
259
+
260
+ class MiniMindBlock(nn.Module):
261
+ def __init__(self, layer_id: int, config: LMConfig):
262
+ super().__init__()
263
+ self.n_heads = config.n_heads
264
+ self.dim = config.dim
265
+ self.head_dim = config.dim // config.n_heads
266
+ self.attention = Attention(config)
267
+
268
+ self.layer_id = layer_id
269
+ self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
270
+ self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
271
+ self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
272
+
273
+ def forward(self, x, pos_cis, past_key_value=None, use_cache=False):
274
+ h_attn, past_kv = self.attention(
275
+ self.attention_norm(x),
276
+ pos_cis,
277
+ past_key_value=past_key_value,
278
+ use_cache=use_cache
279
+ )
280
+ h = x + h_attn
281
+ out = h + self.feed_forward(self.ffn_norm(h))
282
+ return out, past_kv
283
+
284
+
285
+ class MiniMindLM(PreTrainedModel):
286
+ config_class = LMConfig
287
+
288
+ def __init__(self, params: LMConfig = None):
289
+ self.params = params or LMConfig()
290
+ super().__init__(self.params)
291
+ self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
292
+ self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
293
+ self.dropout = nn.Dropout(params.dropout)
294
+ self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
295
+ self.norm = RMSNorm(params.dim, eps=params.norm_eps)
296
+ self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
297
+ self.tok_embeddings.weight = self.output.weight
298
+ self.register_buffer("pos_cis", precompute_pos_cis(params.dim // params.n_heads, params.max_seq_len,
299
+ theta=params.rope_theta), persistent=False)
300
+ self.OUT = CausalLMOutputWithPast()
301
+
302
+ def forward(self,
303
+ input_ids: Optional[torch.Tensor] = None,
304
+ past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
305
+ use_cache: bool = False,
306
+ **args):
307
+ past_key_values = past_key_values or [None] * len(self.layers)
308
+ start_pos = args.get('start_pos', 0)
309
+ h = self.dropout(self.tok_embeddings(input_ids))
310
+ pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
311
+ past_kvs = []
312
+ for l, layer in enumerate(self.layers):
313
+ h, past_kv = layer(
314
+ h, pos_cis,
315
+ past_key_value=past_key_values[l],
316
+ use_cache=use_cache
317
+ )
318
+ past_kvs.append(past_kv)
319
+ logits = self.output(self.norm(h))
320
+ aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
321
+ self.OUT.__setitem__('logits', logits)
322
+ self.OUT.__setitem__('aux_loss', aux_loss)
323
+ self.OUT.__setitem__('past_key_values', past_kvs)
324
+ return self.OUT
325
+
326
+ @torch.inference_mode()
327
+ def generate(self, input_ids, eos_token_id=2, max_new_tokens=1024, temperature=0.75, top_p=0.90,
328
+ stream=False, rp=1., use_cache=True, pad_token_id=0, **args):
329
+ # 流式生成
330
+ if stream:
331
+ return self._generate_stream(input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache)
332
+
333
+ # 直接生成
334
+ generated = []
335
+ for i in range(input_ids.size(0)):
336
+ non_pad = input_ids[i][input_ids[i] != pad_token_id].unsqueeze(0)
337
+ out = self._generate_stream(non_pad, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache)
338
+ tokens_list = [tokens[:, -1:] for tokens in out]
339
+ gen = torch.cat(tokens_list, dim=-1) if tokens_list else non_pad
340
+ full_sequence = torch.cat([non_pad, gen], dim=-1)
341
+ generated.append(full_sequence)
342
+ max_length = max(seq.size(1) for seq in generated)
343
+ generated = [
344
+ torch.cat(
345
+ [seq, torch.full((1, max_length - seq.size(1)), pad_token_id, dtype=seq.dtype, device=seq.device)],
346
+ dim=-1)
347
+ for seq in generated
348
+ ]
349
+ return torch.cat(generated, dim=0)
350
+
351
+ def _generate_stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache, **args):
352
+ start, first_seq, past_kvs = input_ids.shape[1], True, None
353
+ while input_ids.shape[1] < max_new_tokens - 1:
354
+ if first_seq or not use_cache:
355
+ out, first_seq = self(input_ids, past_key_values=past_kvs, use_cache=use_cache), False
356
+ else:
357
+ out = self(input_ids[:, -1:], past_key_values=past_kvs, use_cache=use_cache,
358
+ start_pos=input_ids.shape[1] - 1)
359
+ logits, past_kvs = out.logits[:, -1, :], out.past_key_values
360
+ logits[:, list(set(input_ids.tolist()[0]))] /= rp
361
+ logits /= (temperature + 1e-9)
362
+ if top_p is not None and top_p < 1.0:
363
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
364
+ sorted_probs = F.softmax(sorted_logits, dim=-1)
365
+ cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
366
+ sorted_indices_to_remove = cumulative_probs > top_p
367
+ sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
368
+ sorted_indices_to_remove[:, 0] = False
369
+ indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
370
+ logits[indices_to_remove] = -float('Inf')
371
+ input_ids_next = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
372
+ input_ids = torch.cat((input_ids, input_ids_next), dim=1)
373
+ yield input_ids[:, start:]
374
+ if input_ids_next.item() == eos_token_id:
375
+ break
MiniMind2/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec3524299d4353b30a999f74c7cdb3c0f7e5d137a1565dbd716150bbb374db79
3
+ size 416170002
MiniMind2/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
MiniMind2/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
MiniMind2/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [],
32
+ "bos_token": "<s>",
33
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{{ '<s>system\\n' + system_message + '</s>\\n' }}{% else %}{{ '<s>system\\n你是 MiniMind,是一个有用的人工智能助手。</s>\\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<s>user\\n' + content + '</s>\\n<s>assistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' + '\\n' }}{% endif %}{% endfor %}",
34
+ "clean_up_tokenization_spaces": false,
35
+ "eos_token": "</s>",
36
+ "extra_special_tokens": {},
37
+ "legacy": true,
38
+ "model_max_length": 32768,
39
+ "pad_token": "<unk>",
40
+ "sp_model_kwargs": {},
41
+ "spaces_between_special_tokens": false,
42
+ "tokenizer_class": "PreTrainedTokenizerFast",
43
+ "unk_token": "<unk>"
44
+ }
app.py ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import re
3
+ import time
4
+
5
+ import numpy as np
6
+ import streamlit as st
7
+ import torch
8
+
9
+ st.set_page_config(page_title="MiniMind", initial_sidebar_state="collapsed")
10
+
11
+ # 在文件开头的 CSS 样式中修改按钮样式
12
+ st.markdown("""
13
+ <style>
14
+ /* 添加操作按钮样式 */
15
+ .stButton button {
16
+ border-radius: 50% !important; /* 改为圆形 */
17
+ width: 32px !important; /* 固定宽度 */
18
+ height: 32px !important; /* 固定高度 */
19
+ padding: 0 !important; /* 移除内边距 */
20
+ background-color: transparent !important;
21
+ border: 1px solid #ddd !important;
22
+ display: flex !important;
23
+ align-items: center !important;
24
+ justify-content: center !important;
25
+ font-size: 14px !important;
26
+ color: #666 !important; /* 更柔和的颜色 */
27
+ margin: 5px 10px 5px 0 !important; /* 调整按钮间距 */
28
+ }
29
+ .stButton button:hover {
30
+ border-color: #999 !important;
31
+ color: #333 !important;
32
+ background-color: #f5f5f5 !important;
33
+ }
34
+ .stMainBlockContainer > div:first-child {
35
+ margin-top: -50px !important;
36
+ }
37
+ .stApp > div:last-child {
38
+ margin-bottom: -35px !important;
39
+ }
40
+
41
+ /* 重置按钮基础样式 */
42
+ .stButton > button {
43
+ all: unset !important; /* 重置所有默认样式 */
44
+ box-sizing: border-box !important;
45
+ border-radius: 50% !important;
46
+ width: 18px !important;
47
+ height: 18px !important;
48
+ min-width: 18px !important;
49
+ min-height: 18px !important;
50
+ max-width: 18px !important;
51
+ max-height: 18px !important;
52
+ padding: 0 !important;
53
+ background-color: transparent !important;
54
+ border: 1px solid #ddd !important;
55
+ display: flex !important;
56
+ align-items: center !important;
57
+ justify-content: center !important;
58
+ font-size: 14px !important;
59
+ color: #888 !important;
60
+ cursor: pointer !important;
61
+ transition: all 0.2s ease !important;
62
+ margin: 0 2px !important; /* 调整这里的 margin 值 */
63
+ }
64
+
65
+ </style>
66
+ """, unsafe_allow_html=True)
67
+
68
+ system_prompt = []
69
+ device = "cuda" if torch.cuda.is_available() else "cpu"
70
+
71
+
72
+ def process_assistant_content(content):
73
+ if 'R1' not in MODEL_PATHS[selected_model][1]:
74
+ return content
75
+
76
+ if '<think>' in content and '</think>' in content:
77
+ content = re.sub(r'(<think>)(.*?)(</think>)',
78
+ r'<details style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">推理内容(展开)</summary>\2</details>',
79
+ content,
80
+ flags=re.DOTALL)
81
+
82
+ if '<think>' in content and '</think>' not in content:
83
+ content = re.sub(r'<think>(.*?)$',
84
+ r'<details open style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">推理中...</summary>\1</details>',
85
+ content,
86
+ flags=re.DOTALL)
87
+
88
+ if '<think>' not in content and '</think>' in content:
89
+ content = re.sub(r'(.*?)</think>',
90
+ r'<details style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">推理内容(展开)</summary>\1</details>',
91
+ content,
92
+ flags=re.DOTALL)
93
+
94
+ return content
95
+
96
+
97
+ @st.cache_resource
98
+ def load_model_tokenizer(model_path):
99
+ model = AutoModelForCausalLM.from_pretrained(
100
+ model_path,
101
+ trust_remote_code=True
102
+ )
103
+ tokenizer = AutoTokenizer.from_pretrained(
104
+ model_path,
105
+ use_fast=False,
106
+ trust_remote_code=True
107
+ )
108
+ model = model.eval().to(device)
109
+ return model, tokenizer
110
+
111
+
112
+ def clear_chat_messages():
113
+ del st.session_state.messages
114
+ del st.session_state.chat_messages
115
+
116
+
117
+ def init_chat_messages():
118
+ if "messages" in st.session_state:
119
+ for i, message in enumerate(st.session_state.messages):
120
+ if message["role"] == "assistant":
121
+ with st.chat_message("assistant", avatar=image_url):
122
+ st.markdown(process_assistant_content(message["content"]), unsafe_allow_html=True)
123
+ # 在消息内容下方添加按钮
124
+ if st.button("🗑", key=f"delete_{i}"):
125
+ st.session_state.messages.pop(i)
126
+ st.session_state.messages.pop(i - 1)
127
+ st.session_state.chat_messages.pop(i)
128
+ st.session_state.chat_messages.pop(i - 1)
129
+ st.rerun()
130
+ else:
131
+ st.markdown(
132
+ f'<div style="display: flex; justify-content: flex-end;"><div style="display: inline-block; margin: 10px 0; padding: 8px 12px 8px 12px; background-color: #ddd; border-radius: 10px; color: black;">{message["content"]}</div></div>',
133
+ unsafe_allow_html=True)
134
+
135
+ else:
136
+ st.session_state.messages = []
137
+ st.session_state.chat_messages = []
138
+
139
+ return st.session_state.messages
140
+
141
+
142
+ # 添加这两个辅助函数
143
+ def regenerate_answer(index):
144
+ st.session_state.messages.pop()
145
+ st.session_state.chat_messages.pop()
146
+ st.rerun()
147
+
148
+
149
+ def delete_conversation(index):
150
+ st.session_state.messages.pop(index)
151
+ st.session_state.messages.pop(index - 1)
152
+ st.session_state.chat_messages.pop(index)
153
+ st.session_state.chat_messages.pop(index - 1)
154
+ st.rerun()
155
+
156
+
157
+ # 侧边栏模型选择
158
+ st.sidebar.title("模型设定调整")
159
+
160
+ st.sidebar.text("【注】训练数据偏差,增加上下文记忆时\n多轮对话(较单轮)容易出现能力衰减")
161
+ st.session_state.history_chat_num = st.sidebar.slider("Number of Historical Dialogues", 0, 6, 0, step=2)
162
+ # st.session_state.history_chat_num = 0
163
+ st.session_state.max_new_tokens = st.sidebar.slider("Max Sequence Length", 256, 8192, 8192, step=1)
164
+ st.session_state.top_p = st.sidebar.slider("Top-P", 0.8, 0.99, 0.85, step=0.01)
165
+ st.session_state.temperature = st.sidebar.slider("Temperature", 0.6, 1.2, 0.85, step=0.01)
166
+
167
+ # 模型路径映射
168
+ MODEL_PATHS = {
169
+ "MiniMind2-R1 (0.1B)": ["./MiniMind2-R1", "MiniMind2-R1"],
170
+ "MiniMind2 (0.1B)": ["./MiniMind2", "MiniMind2"],
171
+ }
172
+
173
+ selected_model = st.sidebar.selectbox('Models', list(MODEL_PATHS.keys()), index=0) # 默认选择 MiniMind2
174
+ model_path = MODEL_PATHS[selected_model][0]
175
+
176
+ slogan = f"Hi, I'm {MODEL_PATHS[selected_model][1]}"
177
+
178
+ image_url = "https://www.modelscope.cn/api/v1/studio/gongjy/MiniMind/repo?Revision=master&FilePath=images%2Flogo2.png&View=true"
179
+
180
+ st.markdown(
181
+ f'<div style="display: flex; flex-direction: column; align-items: center; text-align: center; margin: 0; padding: 0;">'
182
+ '<div style="font-style: italic; font-weight: 900; margin: 0; padding-top: 4px; display: flex; align-items: center; justify-content: center; flex-wrap: wrap; width: 100%;">'
183
+ f'<img src="{image_url}" style="width: 45px; height: 45px; "> '
184
+ f'<span style="font-size: 26px; margin-left: 10px;">{slogan}</span>'
185
+ '</div>'
186
+ '<span style="color: #bbb; font-style: italic; margin-top: 6px; margin-bottom: 10px;">内容完全由AI生成,请务必仔细甄别<br>Content AI-generated, please discern with care</span>'
187
+ '</div>',
188
+ unsafe_allow_html=True
189
+ )
190
+
191
+
192
+ def setup_seed(seed):
193
+ random.seed(seed)
194
+ np.random.seed(seed)
195
+ torch.manual_seed(seed)
196
+ torch.cuda.manual_seed(seed)
197
+ torch.cuda.manual_seed_all(seed)
198
+ torch.backends.cudnn.deterministic = True
199
+ torch.backends.cudnn.benchmark = False
200
+
201
+
202
+ def main():
203
+ model, tokenizer = load_model_tokenizer(model_path)
204
+
205
+ # 初始化消息列表
206
+ if "messages" not in st.session_state:
207
+ st.session_state.messages = []
208
+ st.session_state.chat_messages = []
209
+
210
+ # Use session state messages
211
+ messages = st.session_state.messages
212
+
213
+ # 在显示历史消息的循环中
214
+ for i, message in enumerate(messages):
215
+ if message["role"] == "assistant":
216
+ with st.chat_message("assistant", avatar=image_url):
217
+ st.markdown(process_assistant_content(message["content"]), unsafe_allow_html=True)
218
+ if st.button("×", key=f"delete_{i}"):
219
+ # 删除当前消息及其之后的所有消息
220
+ st.session_state.messages = st.session_state.messages[:i - 1]
221
+ st.session_state.chat_messages = st.session_state.chat_messages[:i - 1]
222
+ st.rerun()
223
+ else:
224
+ st.markdown(
225
+ f'<div style="display: flex; justify-content: flex-end;"><div style="display: inline-block; margin: 10px 0; padding: 8px 12px 8px 12px; background-color: gray; border-radius: 10px; color:white; ">{message["content"]}</div></div>',
226
+ unsafe_allow_html=True)
227
+
228
+ # 处理新的输入或重新生成
229
+ prompt = st.chat_input(key="input", placeholder="给 MiniMind 发送消息")
230
+
231
+ # 检查是否需要重新生成
232
+ if hasattr(st.session_state, 'regenerate') and st.session_state.regenerate:
233
+ prompt = st.session_state.last_user_message
234
+ regenerate_index = st.session_state.regenerate_index # 获取重新生成的位置
235
+ # 清除所有重新生成相关的状态
236
+ delattr(st.session_state, 'regenerate')
237
+ delattr(st.session_state, 'last_user_message')
238
+ delattr(st.session_state, 'regenerate_index')
239
+
240
+ if prompt:
241
+ st.markdown(
242
+ f'<div style="display: flex; justify-content: flex-end;"><div style="display: inline-block; margin: 10px 0; padding: 8px 12px 8px 12px; background-color: gray; border-radius: 10px; color:white; ">{prompt}</div></div>',
243
+ unsafe_allow_html=True)
244
+ messages.append({"role": "user", "content": prompt})
245
+ st.session_state.chat_messages.append({"role": "user", "content": prompt})
246
+
247
+ with st.chat_message("assistant", avatar=image_url):
248
+ placeholder = st.empty()
249
+ random_seed = random.randint(0, 2 ** 32 - 1)
250
+ setup_seed(random_seed)
251
+
252
+ st.session_state.chat_messages = system_prompt + st.session_state.chat_messages[
253
+ -(st.session_state.history_chat_num + 1):]
254
+ new_prompt = tokenizer.apply_chat_template(
255
+ st.session_state.chat_messages,
256
+ tokenize=False,
257
+ add_generation_prompt=True
258
+ )[-(st.session_state.max_new_tokens - 1):]
259
+
260
+ x = torch.tensor(tokenizer(new_prompt)['input_ids'], device=device).unsqueeze(0)
261
+ with torch.no_grad():
262
+ res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=st.session_state.max_new_tokens,
263
+ temperature=st.session_state.temperature,
264
+ top_p=st.session_state.top_p, stream=True)
265
+ try:
266
+ for y in res_y:
267
+ answer = tokenizer.decode(y[0].tolist(), skip_special_tokens=True)
268
+ if (answer and answer[-1] == '�') or not answer:
269
+ continue
270
+ placeholder.markdown(process_assistant_content(answer), unsafe_allow_html=True)
271
+ except StopIteration:
272
+ print("No answer")
273
+
274
+ assistant_answer = answer.replace(new_prompt, "")
275
+ messages.append({"role": "assistant", "content": assistant_answer})
276
+ st.session_state.chat_messages.append({"role": "assistant", "content": assistant_answer})
277
+
278
+ with st.empty():
279
+ if st.button("×", key=f"delete_{len(messages) - 1}"):
280
+ st.session_state.messages = st.session_state.messages[:-2]
281
+ st.session_state.chat_messages = st.session_state.chat_messages[:-2]
282
+ st.rerun()
283
+
284
+
285
+ if __name__ == "__main__":
286
+ from transformers import AutoModelForCausalLM, AutoTokenizer
287
+
288
+ main()