ipvikas commited on
Commit
3f174c9
·
1 Parent(s): fd56dab

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -25
app.py CHANGED
@@ -1,34 +1,22 @@
 
 
1
  import gradio as gr
2
- import pathlib
3
  from deepface import DeepFace
 
4
 
5
- #db_path='https://huggingface.co/spaces/ipvikas/ImageProcessing/blob/main/MyPhotos'
 
 
 
 
 
6
 
7
- #db_path='https://huggingface.co/spaces/ipvikas/ImageProcessing/commit/c65e002550d4c148da1bb94c114373b2272f4d88#d2h-994579/'
8
- db_path= [[path.as_posix()] for path in sorted(pathlib.Path('Image_DATA').rglob('*.j*g'))]
9
-
10
- #from datasets import load_dataset
11
- #db_path= load_dataset("imagefolder", data_files=db_path)
12
 
13
 
14
- import pandas as pd
15
- def get_deepface(image):
16
- df = DeepFace.find(img_path=image, db_path=db_path)
17
- d = DeepFace.analyze(img_path=image)
18
- #new_list = zip(d.keys(), d.values())
19
- #new_list = list(new_list)
20
- return d
21
-
22
- description = "Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, Google FaceNet, OpenFace, Facebook DeepFace, DeepID, ArcFace and Dlib."
23
 
24
- facial_attribute_demo = gr.Interface(
25
- fn=get_deepface,
26
- inputs="image",
27
- outputs=['text'],
28
- title="face recognition and facial attribute analysis",
29
- description=description,
30
- enable_queue=True,
31
- examples=[["10Jan_1.jpeg"]],
32
- cache_examples=False)
33
 
34
  facial_attribute_demo.launch()
 
1
+ #ALL as a whole
2
+ import os
3
  import gradio as gr
 
4
  from deepface import DeepFace
5
+ import matplotlib.pyplot as plt
6
 
7
+ def get_deepface_verify(img1_detect, img2_detect ):
8
+ img1_detect= DeepFace.detectFace(img1_path)
9
+ img2_detect= DeepFace.detectFace(img2_path)
10
+ model_name = 'ArcFace' #VGG-Face, Facenet, OpenFace, DeepFace, DeepID, Dlib, ArcFace or Ensemble
11
+ result = DeepFace.verify(img1_path=img1_path,img2_path=img2_path,model_name = model_name)
12
+ return result
13
 
14
+ title = "DeepFace"
15
+ description = "Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, Google FaceNet, OpenFace, Facebook DeepFace, DeepID, ArcFace and Dlib."
16
+ examples=[["10Jan_1.jpeg"],["10Jan_2.jpeg"]]
 
 
17
 
18
 
19
+ facial_attribute_demo = gr.Interface(get_deepface_verify,["image","image", label="distance metric"],[gr.outputs.Label(label="same person"),gr.outputs.Label(label="distance"),gr.outputs.Label(label="max threshold to verify"),gr.outputs.Label(label="model"),gr.outputs.Label(label="similarity metric")],enable_queue=True,examples=examples, title=title,description=description,article=article,theme="darkdefault").launch(debug=True)
 
 
 
 
 
 
 
 
20
 
 
 
 
 
 
 
 
 
 
21
 
22
  facial_attribute_demo.launch()