Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pathlib | |
from deepface import DeepFace | |
#db_path='https://huggingface.co/spaces/ipvikas/ImageProcessing/blob/main/MyPhotos' | |
#db_path='https://huggingface.co/spaces/ipvikas/ImageProcessing/commit/c65e002550d4c148da1bb94c114373b2272f4d88#d2h-994579/' | |
db_path= [[path.as_posix()] for path in sorted(pathlib.Path('Image_DATA').rglob('*.j*g'))] | |
#from datasets import load_dataset | |
#db_path= load_dataset("imagefolder", data_files=db_path) | |
import pandas as pd | |
def get_deepface(image): | |
df = DeepFace.find(img_path=image, db_path=db_path) | |
d = DeepFace.analyze(img_path=image) | |
#new_list = zip(d.keys(), d.values()) | |
#new_list = list(new_list) | |
return d | |
description = "Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, Google FaceNet, OpenFace, Facebook DeepFace, DeepID, ArcFace and Dlib." | |
facial_attribute_demo = gr.Interface( | |
fn=get_deepface, | |
inputs="image", | |
outputs=['text'], | |
title="face recognition and facial attribute analysis", | |
description=description, | |
enable_queue=True, | |
examples=[["10Jan_1.jpeg"]], | |
cache_examples=False) | |
#facial_attribute_demo.launch() |