Spaces:
Sleeping
Sleeping
Mohammad Ibrahim
commited on
Commit
·
5cf9256
1
Parent(s):
7f96ead
Add application file
Browse files- CodeFiles/classnotes.ipynb +0 -0
- CodeFiles/input.txt +0 -0
- CodeFiles/train_get2-1.py +210 -0
- CodeFiles/train_get2-2.py +217 -0
- CodeFiles/train_get2-3.py +229 -0
- CodeFiles/train_get2-4.py +232 -0
- CodeFiles/train_get2-5.py +239 -0
- CodeFiles/train_get2-6.py +262 -0
- CodeFiles/train_get2-7.py +278 -0
- CodeFiles/train_get2-8-init.py +287 -0
- CodeFiles/train_get2-9-speedup1.py +293 -0
- CodeFiles/train_get2-9-speedup2.py +295 -0
- CodeFiles/train_get2-9-speedup3.py +297 -0
- CodeFiles/train_get2-9-speedup4.py +298 -0
- CodeFiles/train_get2-9-speedup5.py +300 -0
- CodeFiles/train_get2-9-speedup6.py +300 -0
- CodeFiles/train_get2-9-speedup7.py +304 -0
- CodeFiles/train_get2-9-speedup8.py +322 -0
- CodeFiles/train_get2-9-speedup9.py +352 -0
- app.py +280 -0
- infer.py +265 -0
- input.txt +0 -0
- model5k.pt +3 -0
- requirements.txt +2 -0
- tmp/6c7ea1a7e38e3a7f062df639a5b80947f075ffe6 +0 -0
- tmp/6d1cbeee0f20b3d9449abfede4726ed8212e3aee +0 -0
CodeFiles/classnotes.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
CodeFiles/input.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
CodeFiles/train_get2-1.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import time
|
4 |
+
import inspect
|
5 |
+
from dataclasses import dataclass
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
|
11 |
+
class CausalSelfAttention(nn.Module):
|
12 |
+
|
13 |
+
def __init__(self, config):
|
14 |
+
super().__init__()
|
15 |
+
assert config.n_embd % config.n_head == 0
|
16 |
+
# key, query, value projections for all heads, but in a batch
|
17 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
18 |
+
# output projection
|
19 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
20 |
+
# regularization
|
21 |
+
self.n_head = config.n_head
|
22 |
+
self.n_embd = config.n_embd
|
23 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
27 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
28 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
29 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
30 |
+
qkv = self.c_attn(x)
|
31 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
32 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
33 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
34 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
|
36 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
37 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
38 |
+
att = F.softmax(att, dim=-1)
|
39 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
40 |
+
|
41 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
42 |
+
# output projection
|
43 |
+
y = self.c_proj(y)
|
44 |
+
return y
|
45 |
+
|
46 |
+
|
47 |
+
class MLP(nn.Module):
|
48 |
+
|
49 |
+
def __init__(self, config):
|
50 |
+
super().__init__()
|
51 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
52 |
+
self.gelu = nn.GELU(approximate='tanh')
|
53 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
54 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
x = self.c_fc(x)
|
58 |
+
x = self.gelu(x)
|
59 |
+
x = self.c_proj(x)
|
60 |
+
return x
|
61 |
+
|
62 |
+
class Block(nn.Module):
|
63 |
+
|
64 |
+
def __init__(self, config):
|
65 |
+
super().__init__()
|
66 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
67 |
+
self.attn = CausalSelfAttention(config)
|
68 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
69 |
+
self.mlp = MLP(config)
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
x = x + self.attn(self.ln_1(x))
|
73 |
+
x = x + self.mlp(self.ln_2(x))
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class GPTConfig:
|
79 |
+
block_size: int = 1024 # max sequence length
|
80 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
81 |
+
n_layer: int = 12 # number of layers
|
82 |
+
n_head: int = 12 # number of heads
|
83 |
+
n_embd: int = 768 # embedding dimension
|
84 |
+
|
85 |
+
|
86 |
+
class GPT(nn.Module):
|
87 |
+
|
88 |
+
def __init__(self, config):
|
89 |
+
super().__init__()
|
90 |
+
self.config = config
|
91 |
+
|
92 |
+
self.transformer = nn.ModuleDict(dict(
|
93 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
94 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
95 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
96 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
97 |
+
))
|
98 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
99 |
+
|
100 |
+
def forward(self, idx, targets=None):
|
101 |
+
# idx is of shape (B, T)
|
102 |
+
B, T = idx.size()
|
103 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
104 |
+
# forward the token and posisition embeddings
|
105 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
106 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
107 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
108 |
+
x = tok_emb + pos_emb
|
109 |
+
# forward the blocks of the transformer
|
110 |
+
for block in self.transformer.h:
|
111 |
+
x = block(x)
|
112 |
+
# forward the final layernorm and the classifier
|
113 |
+
x = self.transformer.ln_f(x)
|
114 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
115 |
+
loss = None
|
116 |
+
if targets is not None:
|
117 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
118 |
+
return logits, loss
|
119 |
+
|
120 |
+
@classmethod
|
121 |
+
def from_pretrained(cls, model_type):
|
122 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
123 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
124 |
+
from transformers import GPT2LMHeadModel
|
125 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
126 |
+
|
127 |
+
# n_layer, n_head and n_embd are determined from model_type
|
128 |
+
config_args = {
|
129 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
130 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
131 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
132 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
133 |
+
}[model_type]
|
134 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
135 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
136 |
+
# create a from-scratch initialized minGPT model
|
137 |
+
config = GPTConfig(**config_args)
|
138 |
+
model = GPT(config)
|
139 |
+
sd = model.state_dict()
|
140 |
+
sd_keys = sd.keys()
|
141 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
142 |
+
|
143 |
+
# init a huggingface/transformers model
|
144 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
145 |
+
sd_hf = model_hf.state_dict()
|
146 |
+
|
147 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
148 |
+
sd_keys_hf = sd_hf.keys()
|
149 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
150 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
151 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
152 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
153 |
+
# this means that we have to transpose these weights when we import them
|
154 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
155 |
+
for k in sd_keys_hf:
|
156 |
+
if any(k.endswith(w) for w in transposed):
|
157 |
+
# special treatment for the Conv1D weights we need to transpose
|
158 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
159 |
+
with torch.no_grad():
|
160 |
+
sd[k].copy_(sd_hf[k].t())
|
161 |
+
else:
|
162 |
+
# vanilla copy over the other parameters
|
163 |
+
assert sd_hf[k].shape == sd[k].shape
|
164 |
+
with torch.no_grad():
|
165 |
+
sd[k].copy_(sd_hf[k])
|
166 |
+
|
167 |
+
return model
|
168 |
+
|
169 |
+
model = GPT.from_pretrained('gpt2')
|
170 |
+
print("didn't crash yet!")
|
171 |
+
# STOP
|
172 |
+
num_return_sequences = 5
|
173 |
+
max_length = 30
|
174 |
+
|
175 |
+
model.eval()
|
176 |
+
model.to('cuda')
|
177 |
+
|
178 |
+
import tiktoken
|
179 |
+
enc = tiktoken.get_encoding('gpt2')
|
180 |
+
tokens = enc.encode("Hello, I'm a language model,")
|
181 |
+
tokens = torch.tensor(tokens, dtype= torch.long) # (8,) #check tiktoken app
|
182 |
+
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1) # (5, 8)
|
183 |
+
x = tokens.to('cuda')
|
184 |
+
|
185 |
+
torch.manual_seed(42)
|
186 |
+
torch.cuda.manual_seed(42)
|
187 |
+
while x.size(1) < max_length:
|
188 |
+
# forward the model to get the logits
|
189 |
+
with torch.no_grad():
|
190 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
191 |
+
# take the logits at the last position
|
192 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
193 |
+
# get the probabilities
|
194 |
+
probs = F.softmax(logits, dim=-1)
|
195 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
196 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
197 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
198 |
+
# select a token from the top-k probabilities
|
199 |
+
# note: multinomial does not demand the input to sum to 1
|
200 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
201 |
+
# gather the corresponding indices
|
202 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
203 |
+
# append to the sequence
|
204 |
+
x = torch.cat((x, xcol), dim=1)
|
205 |
+
|
206 |
+
# print the generated text
|
207 |
+
for i in range(num_return_sequences):
|
208 |
+
tokens = x[i, :max_length].tolist()
|
209 |
+
decoded = enc.decode(tokens)
|
210 |
+
print(">", decoded)
|
CodeFiles/train_get2-2.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import time
|
4 |
+
import inspect
|
5 |
+
from dataclasses import dataclass
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
|
11 |
+
class CausalSelfAttention(nn.Module):
|
12 |
+
|
13 |
+
def __init__(self, config):
|
14 |
+
super().__init__()
|
15 |
+
assert config.n_embd % config.n_head == 0
|
16 |
+
# key, query, value projections for all heads, but in a batch
|
17 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
18 |
+
# output projection
|
19 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
20 |
+
# regularization
|
21 |
+
self.n_head = config.n_head
|
22 |
+
self.n_embd = config.n_embd
|
23 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
27 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
28 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
29 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
30 |
+
qkv = self.c_attn(x)
|
31 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
32 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
33 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
34 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
|
36 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
37 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
38 |
+
att = F.softmax(att, dim=-1)
|
39 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
40 |
+
|
41 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
42 |
+
# output projection
|
43 |
+
y = self.c_proj(y)
|
44 |
+
return y
|
45 |
+
|
46 |
+
|
47 |
+
class MLP(nn.Module):
|
48 |
+
|
49 |
+
def __init__(self, config):
|
50 |
+
super().__init__()
|
51 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
52 |
+
self.gelu = nn.GELU(approximate='tanh')
|
53 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
54 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
x = self.c_fc(x)
|
58 |
+
x = self.gelu(x)
|
59 |
+
x = self.c_proj(x)
|
60 |
+
return x
|
61 |
+
|
62 |
+
class Block(nn.Module):
|
63 |
+
|
64 |
+
def __init__(self, config):
|
65 |
+
super().__init__()
|
66 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
67 |
+
self.attn = CausalSelfAttention(config)
|
68 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
69 |
+
self.mlp = MLP(config)
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
x = x + self.attn(self.ln_1(x))
|
73 |
+
x = x + self.mlp(self.ln_2(x))
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class GPTConfig:
|
79 |
+
block_size: int = 1024 # max sequence length
|
80 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
81 |
+
n_layer: int = 12 # number of layers
|
82 |
+
n_head: int = 12 # number of heads
|
83 |
+
n_embd: int = 768 # embedding dimension
|
84 |
+
|
85 |
+
|
86 |
+
class GPT(nn.Module):
|
87 |
+
|
88 |
+
def __init__(self, config):
|
89 |
+
super().__init__()
|
90 |
+
self.config = config
|
91 |
+
|
92 |
+
self.transformer = nn.ModuleDict(dict(
|
93 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
94 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
95 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
96 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
97 |
+
))
|
98 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
99 |
+
|
100 |
+
def forward(self, idx, targets=None):
|
101 |
+
# idx is of shape (B, T)
|
102 |
+
B, T = idx.size()
|
103 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
104 |
+
# forward the token and posisition embeddings
|
105 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
106 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
107 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
108 |
+
x = tok_emb + pos_emb
|
109 |
+
# forward the blocks of the transformer
|
110 |
+
for block in self.transformer.h:
|
111 |
+
x = block(x)
|
112 |
+
# forward the final layernorm and the classifier
|
113 |
+
x = self.transformer.ln_f(x)
|
114 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
115 |
+
loss = None
|
116 |
+
if targets is not None:
|
117 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
118 |
+
return logits, loss
|
119 |
+
|
120 |
+
@classmethod
|
121 |
+
def from_pretrained(cls, model_type):
|
122 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
123 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
124 |
+
from transformers import GPT2LMHeadModel
|
125 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
126 |
+
|
127 |
+
# n_layer, n_head and n_embd are determined from model_type
|
128 |
+
config_args = {
|
129 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
130 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
131 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
132 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
133 |
+
}[model_type]
|
134 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
135 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
136 |
+
# create a from-scratch initialized minGPT model
|
137 |
+
config = GPTConfig(**config_args)
|
138 |
+
model = GPT(config)
|
139 |
+
sd = model.state_dict()
|
140 |
+
sd_keys = sd.keys()
|
141 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
142 |
+
|
143 |
+
# init a huggingface/transformers model
|
144 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
145 |
+
sd_hf = model_hf.state_dict()
|
146 |
+
|
147 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
148 |
+
sd_keys_hf = sd_hf.keys()
|
149 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
150 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
151 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
152 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
153 |
+
# this means that we have to transpose these weights when we import them
|
154 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
155 |
+
for k in sd_keys_hf:
|
156 |
+
if any(k.endswith(w) for w in transposed):
|
157 |
+
# special treatment for the Conv1D weights we need to transpose
|
158 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
159 |
+
with torch.no_grad():
|
160 |
+
sd[k].copy_(sd_hf[k].t())
|
161 |
+
else:
|
162 |
+
# vanilla copy over the other parameters
|
163 |
+
assert sd_hf[k].shape == sd[k].shape
|
164 |
+
with torch.no_grad():
|
165 |
+
sd[k].copy_(sd_hf[k])
|
166 |
+
|
167 |
+
return model
|
168 |
+
|
169 |
+
# model = GPT.from_pretrained('gpt2')
|
170 |
+
model = GPT(GPTConfig())
|
171 |
+
device = 'cpu'
|
172 |
+
if torch.cuda.is_available():
|
173 |
+
device = 'cuda'
|
174 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
175 |
+
device = "mps"
|
176 |
+
print(f"using device: {device}")
|
177 |
+
print("didn't crash yet!")
|
178 |
+
# STOP
|
179 |
+
num_return_sequences = 5
|
180 |
+
max_length = 30
|
181 |
+
|
182 |
+
model.eval()
|
183 |
+
model.to(device)
|
184 |
+
|
185 |
+
import tiktoken
|
186 |
+
enc = tiktoken.get_encoding('gpt2')
|
187 |
+
tokens = enc.encode("Hello, I'm a language model,")
|
188 |
+
tokens = torch.tensor(tokens, dtype= torch.long) # (8,) #check tiktoken app
|
189 |
+
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1) # (5, 8)
|
190 |
+
x = tokens.to(device)
|
191 |
+
|
192 |
+
torch.manual_seed(42)
|
193 |
+
torch.cuda.manual_seed(42)
|
194 |
+
while x.size(1) < max_length:
|
195 |
+
# forward the model to get the logits
|
196 |
+
with torch.no_grad():
|
197 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
198 |
+
# take the logits at the last position
|
199 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
200 |
+
# get the probabilities
|
201 |
+
probs = F.softmax(logits, dim=-1)
|
202 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
203 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
204 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
205 |
+
# select a token from the top-k probabilities
|
206 |
+
# note: multinomial does not demand the input to sum to 1
|
207 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
208 |
+
# gather the corresponding indices
|
209 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
210 |
+
# append to the sequence
|
211 |
+
x = torch.cat((x, xcol), dim=1)
|
212 |
+
|
213 |
+
# print the generated text
|
214 |
+
for i in range(num_return_sequences):
|
215 |
+
tokens = x[i, :max_length].tolist()
|
216 |
+
decoded = enc.decode(tokens)
|
217 |
+
print(">", decoded)
|
CodeFiles/train_get2-3.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adding the batch loading part for training
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
# regularization
|
22 |
+
self.n_head = config.n_head
|
23 |
+
self.n_embd = config.n_embd
|
24 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
28 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
29 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
30 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
31 |
+
qkv = self.c_attn(x)
|
32 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
33 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
34 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
|
37 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
38 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
39 |
+
att = F.softmax(att, dim=-1)
|
40 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
41 |
+
|
42 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
43 |
+
# output projection
|
44 |
+
y = self.c_proj(y)
|
45 |
+
return y
|
46 |
+
|
47 |
+
|
48 |
+
class MLP(nn.Module):
|
49 |
+
|
50 |
+
def __init__(self, config):
|
51 |
+
super().__init__()
|
52 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
53 |
+
self.gelu = nn.GELU(approximate='tanh')
|
54 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
55 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
x = self.c_fc(x)
|
59 |
+
x = self.gelu(x)
|
60 |
+
x = self.c_proj(x)
|
61 |
+
return x
|
62 |
+
|
63 |
+
class Block(nn.Module):
|
64 |
+
|
65 |
+
def __init__(self, config):
|
66 |
+
super().__init__()
|
67 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
68 |
+
self.attn = CausalSelfAttention(config)
|
69 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
70 |
+
self.mlp = MLP(config)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
x = x + self.attn(self.ln_1(x))
|
74 |
+
x = x + self.mlp(self.ln_2(x))
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
@dataclass
|
79 |
+
class GPTConfig:
|
80 |
+
block_size: int = 1024 # max sequence length
|
81 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
82 |
+
n_layer: int = 12 # number of layers
|
83 |
+
n_head: int = 12 # number of heads
|
84 |
+
n_embd: int = 768 # embedding dimension
|
85 |
+
|
86 |
+
|
87 |
+
class GPT(nn.Module):
|
88 |
+
|
89 |
+
def __init__(self, config):
|
90 |
+
super().__init__()
|
91 |
+
self.config = config
|
92 |
+
|
93 |
+
self.transformer = nn.ModuleDict(dict(
|
94 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
95 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
96 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
97 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
98 |
+
))
|
99 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
100 |
+
|
101 |
+
def forward(self, idx, targets=None):
|
102 |
+
# idx is of shape (B, T)
|
103 |
+
B, T = idx.size()
|
104 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
105 |
+
# forward the token and posisition embeddings
|
106 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
107 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
108 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
109 |
+
x = tok_emb + pos_emb
|
110 |
+
# forward the blocks of the transformer
|
111 |
+
for block in self.transformer.h:
|
112 |
+
x = block(x)
|
113 |
+
# forward the final layernorm and the classifier
|
114 |
+
x = self.transformer.ln_f(x)
|
115 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
116 |
+
loss = None
|
117 |
+
if targets is not None:
|
118 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
119 |
+
return logits, loss
|
120 |
+
|
121 |
+
@classmethod
|
122 |
+
def from_pretrained(cls, model_type):
|
123 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
124 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
125 |
+
from transformers import GPT2LMHeadModel
|
126 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
127 |
+
|
128 |
+
# n_layer, n_head and n_embd are determined from model_type
|
129 |
+
config_args = {
|
130 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
131 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
132 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
133 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
134 |
+
}[model_type]
|
135 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
136 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
137 |
+
# create a from-scratch initialized minGPT model
|
138 |
+
config = GPTConfig(**config_args)
|
139 |
+
model = GPT(config)
|
140 |
+
sd = model.state_dict()
|
141 |
+
sd_keys = sd.keys()
|
142 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
143 |
+
|
144 |
+
# init a huggingface/transformers model
|
145 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
146 |
+
sd_hf = model_hf.state_dict()
|
147 |
+
|
148 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
149 |
+
sd_keys_hf = sd_hf.keys()
|
150 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
151 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
152 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
153 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
154 |
+
# this means that we have to transpose these weights when we import them
|
155 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
156 |
+
for k in sd_keys_hf:
|
157 |
+
if any(k.endswith(w) for w in transposed):
|
158 |
+
# special treatment for the Conv1D weights we need to transpose
|
159 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
160 |
+
with torch.no_grad():
|
161 |
+
sd[k].copy_(sd_hf[k].t())
|
162 |
+
else:
|
163 |
+
# vanilla copy over the other parameters
|
164 |
+
assert sd_hf[k].shape == sd[k].shape
|
165 |
+
with torch.no_grad():
|
166 |
+
sd[k].copy_(sd_hf[k])
|
167 |
+
|
168 |
+
return model
|
169 |
+
|
170 |
+
# model = GPT.from_pretrained('gpt2')
|
171 |
+
|
172 |
+
device = 'cpu'
|
173 |
+
if torch.cuda.is_available():
|
174 |
+
device = 'cuda'
|
175 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
176 |
+
device = "mps"
|
177 |
+
print(f"using device: {device}")
|
178 |
+
print("didn't crash yet!")
|
179 |
+
# STOP
|
180 |
+
num_return_sequences = 5
|
181 |
+
max_length = 30
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
import tiktoken
|
186 |
+
enc = tiktoken.get_encoding('gpt2')
|
187 |
+
with open('input.txt', 'r') as f:
|
188 |
+
text = f.read()
|
189 |
+
|
190 |
+
text = text[:1000]
|
191 |
+
tokens = enc.encode(text)
|
192 |
+
B, T = 4, 32
|
193 |
+
buf = torch.tensor(tokens[:B*T + 1])
|
194 |
+
buf = buf.to(device)
|
195 |
+
x = buf[:-1].view(B, T)
|
196 |
+
y = buf[1:].view(B, T)
|
197 |
+
|
198 |
+
model = GPT(GPTConfig())
|
199 |
+
model.to(device)
|
200 |
+
|
201 |
+
logits = model(x)
|
202 |
+
print(logits[0].shape)
|
203 |
+
import sys; sys.exit(0)
|
204 |
+
torch.manual_seed(42)
|
205 |
+
torch.cuda.manual_seed(42)
|
206 |
+
while x.size(1) < max_length:
|
207 |
+
# forward the model to get the logits
|
208 |
+
with torch.no_grad():
|
209 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
210 |
+
# take the logits at the last position
|
211 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
212 |
+
# get the probabilities
|
213 |
+
probs = F.softmax(logits, dim=-1)
|
214 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
215 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
216 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
217 |
+
# select a token from the top-k probabilities
|
218 |
+
# note: multinomial does not demand the input to sum to 1
|
219 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
220 |
+
# gather the corresponding indices
|
221 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
222 |
+
# append to the sequence
|
223 |
+
x = torch.cat((x, xcol), dim=1)
|
224 |
+
|
225 |
+
# print the generated text
|
226 |
+
for i in range(num_return_sequences):
|
227 |
+
tokens = x[i, :max_length].tolist()
|
228 |
+
decoded = enc.decode(tokens)
|
229 |
+
print(">", decoded)
|
CodeFiles/train_get2-4.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adding the batch loading part for training
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
# regularization
|
22 |
+
self.n_head = config.n_head
|
23 |
+
self.n_embd = config.n_embd
|
24 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
28 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
29 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
30 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
31 |
+
qkv = self.c_attn(x)
|
32 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
33 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
34 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
|
37 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
38 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
39 |
+
att = F.softmax(att, dim=-1)
|
40 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
41 |
+
|
42 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
43 |
+
# output projection
|
44 |
+
y = self.c_proj(y)
|
45 |
+
return y
|
46 |
+
|
47 |
+
|
48 |
+
class MLP(nn.Module):
|
49 |
+
|
50 |
+
def __init__(self, config):
|
51 |
+
super().__init__()
|
52 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
53 |
+
self.gelu = nn.GELU(approximate='tanh')
|
54 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
55 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
x = self.c_fc(x)
|
59 |
+
x = self.gelu(x)
|
60 |
+
x = self.c_proj(x)
|
61 |
+
return x
|
62 |
+
|
63 |
+
class Block(nn.Module):
|
64 |
+
|
65 |
+
def __init__(self, config):
|
66 |
+
super().__init__()
|
67 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
68 |
+
self.attn = CausalSelfAttention(config)
|
69 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
70 |
+
self.mlp = MLP(config)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
x = x + self.attn(self.ln_1(x))
|
74 |
+
x = x + self.mlp(self.ln_2(x))
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
@dataclass
|
79 |
+
class GPTConfig:
|
80 |
+
block_size: int = 1024 # max sequence length
|
81 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
82 |
+
n_layer: int = 12 # number of layers
|
83 |
+
n_head: int = 12 # number of heads
|
84 |
+
n_embd: int = 768 # embedding dimension
|
85 |
+
|
86 |
+
|
87 |
+
class GPT(nn.Module):
|
88 |
+
|
89 |
+
def __init__(self, config):
|
90 |
+
super().__init__()
|
91 |
+
self.config = config
|
92 |
+
|
93 |
+
self.transformer = nn.ModuleDict(dict(
|
94 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
95 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
96 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
97 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
98 |
+
))
|
99 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
100 |
+
|
101 |
+
def forward(self, idx, targets=None):
|
102 |
+
# idx is of shape (B, T)
|
103 |
+
B, T = idx.size()
|
104 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
105 |
+
# forward the token and posisition embeddings
|
106 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
107 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
108 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
109 |
+
x = tok_emb + pos_emb
|
110 |
+
# forward the blocks of the transformer
|
111 |
+
for block in self.transformer.h:
|
112 |
+
x = block(x)
|
113 |
+
# forward the final layernorm and the classifier
|
114 |
+
x = self.transformer.ln_f(x)
|
115 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
116 |
+
loss = None
|
117 |
+
if targets is not None:
|
118 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
119 |
+
return logits, loss
|
120 |
+
|
121 |
+
@classmethod
|
122 |
+
def from_pretrained(cls, model_type):
|
123 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
124 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
125 |
+
from transformers import GPT2LMHeadModel
|
126 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
127 |
+
|
128 |
+
# n_layer, n_head and n_embd are determined from model_type
|
129 |
+
config_args = {
|
130 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
131 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
132 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
133 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
134 |
+
}[model_type]
|
135 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
136 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
137 |
+
# create a from-scratch initialized minGPT model
|
138 |
+
config = GPTConfig(**config_args)
|
139 |
+
model = GPT(config)
|
140 |
+
sd = model.state_dict()
|
141 |
+
sd_keys = sd.keys()
|
142 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
143 |
+
|
144 |
+
# init a huggingface/transformers model
|
145 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
146 |
+
sd_hf = model_hf.state_dict()
|
147 |
+
|
148 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
149 |
+
sd_keys_hf = sd_hf.keys()
|
150 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
151 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
152 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
153 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
154 |
+
# this means that we have to transpose these weights when we import them
|
155 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
156 |
+
for k in sd_keys_hf:
|
157 |
+
if any(k.endswith(w) for w in transposed):
|
158 |
+
# special treatment for the Conv1D weights we need to transpose
|
159 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
160 |
+
with torch.no_grad():
|
161 |
+
sd[k].copy_(sd_hf[k].t())
|
162 |
+
else:
|
163 |
+
# vanilla copy over the other parameters
|
164 |
+
assert sd_hf[k].shape == sd[k].shape
|
165 |
+
with torch.no_grad():
|
166 |
+
sd[k].copy_(sd_hf[k])
|
167 |
+
|
168 |
+
return model
|
169 |
+
|
170 |
+
# model = GPT.from_pretrained('gpt2')
|
171 |
+
|
172 |
+
device = 'cpu'
|
173 |
+
if torch.cuda.is_available():
|
174 |
+
device = 'cuda'
|
175 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
176 |
+
device = "mps"
|
177 |
+
print(f"using device: {device}")
|
178 |
+
print("didn't crash yet!")
|
179 |
+
# STOP
|
180 |
+
num_return_sequences = 5
|
181 |
+
max_length = 30
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
import tiktoken
|
186 |
+
enc = tiktoken.get_encoding('gpt2')
|
187 |
+
with open('input.txt', 'r') as f:
|
188 |
+
text = f.read()
|
189 |
+
|
190 |
+
text = text[:1000]
|
191 |
+
tokens = enc.encode(text)
|
192 |
+
B, T = 4, 32
|
193 |
+
buf = torch.tensor(tokens[:B*T + 1])
|
194 |
+
buf = buf.to(device)
|
195 |
+
x = buf[:-1].view(B, T)
|
196 |
+
y = buf[1:].view(B, T)
|
197 |
+
|
198 |
+
model = GPT(GPTConfig())
|
199 |
+
model.to(device)
|
200 |
+
|
201 |
+
logits, loss = model(x, y)
|
202 |
+
print(loss)
|
203 |
+
import sys; sys.exit(0)
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
torch.manual_seed(42)
|
208 |
+
torch.cuda.manual_seed(42)
|
209 |
+
while x.size(1) < max_length:
|
210 |
+
# forward the model to get the logits
|
211 |
+
with torch.no_grad():
|
212 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
213 |
+
# take the logits at the last position
|
214 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
215 |
+
# get the probabilities
|
216 |
+
probs = F.softmax(logits, dim=-1)
|
217 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
218 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
219 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
220 |
+
# select a token from the top-k probabilities
|
221 |
+
# note: multinomial does not demand the input to sum to 1
|
222 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
223 |
+
# gather the corresponding indices
|
224 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
225 |
+
# append to the sequence
|
226 |
+
x = torch.cat((x, xcol), dim=1)
|
227 |
+
|
228 |
+
# print the generated text
|
229 |
+
for i in range(num_return_sequences):
|
230 |
+
tokens = x[i, :max_length].tolist()
|
231 |
+
decoded = enc.decode(tokens)
|
232 |
+
print(">", decoded)
|
CodeFiles/train_get2-5.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adding the batch loading part for training
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
# regularization
|
22 |
+
self.n_head = config.n_head
|
23 |
+
self.n_embd = config.n_embd
|
24 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
28 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
29 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
30 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
31 |
+
qkv = self.c_attn(x)
|
32 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
33 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
34 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
|
37 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
38 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
39 |
+
att = F.softmax(att, dim=-1)
|
40 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
41 |
+
|
42 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
43 |
+
# output projection
|
44 |
+
y = self.c_proj(y)
|
45 |
+
return y
|
46 |
+
|
47 |
+
|
48 |
+
class MLP(nn.Module):
|
49 |
+
|
50 |
+
def __init__(self, config):
|
51 |
+
super().__init__()
|
52 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
53 |
+
self.gelu = nn.GELU(approximate='tanh')
|
54 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
55 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
x = self.c_fc(x)
|
59 |
+
x = self.gelu(x)
|
60 |
+
x = self.c_proj(x)
|
61 |
+
return x
|
62 |
+
|
63 |
+
class Block(nn.Module):
|
64 |
+
|
65 |
+
def __init__(self, config):
|
66 |
+
super().__init__()
|
67 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
68 |
+
self.attn = CausalSelfAttention(config)
|
69 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
70 |
+
self.mlp = MLP(config)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
x = x + self.attn(self.ln_1(x))
|
74 |
+
x = x + self.mlp(self.ln_2(x))
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
@dataclass
|
79 |
+
class GPTConfig:
|
80 |
+
block_size: int = 1024 # max sequence length
|
81 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
82 |
+
n_layer: int = 12 # number of layers
|
83 |
+
n_head: int = 12 # number of heads
|
84 |
+
n_embd: int = 768 # embedding dimension
|
85 |
+
|
86 |
+
|
87 |
+
class GPT(nn.Module):
|
88 |
+
|
89 |
+
def __init__(self, config):
|
90 |
+
super().__init__()
|
91 |
+
self.config = config
|
92 |
+
|
93 |
+
self.transformer = nn.ModuleDict(dict(
|
94 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
95 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
96 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
97 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
98 |
+
))
|
99 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
100 |
+
|
101 |
+
def forward(self, idx, targets=None):
|
102 |
+
# idx is of shape (B, T)
|
103 |
+
B, T = idx.size()
|
104 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
105 |
+
# forward the token and posisition embeddings
|
106 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
107 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
108 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
109 |
+
x = tok_emb + pos_emb
|
110 |
+
# forward the blocks of the transformer
|
111 |
+
for block in self.transformer.h:
|
112 |
+
x = block(x)
|
113 |
+
# forward the final layernorm and the classifier
|
114 |
+
x = self.transformer.ln_f(x)
|
115 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
116 |
+
loss = None
|
117 |
+
if targets is not None:
|
118 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
119 |
+
return logits, loss
|
120 |
+
|
121 |
+
@classmethod
|
122 |
+
def from_pretrained(cls, model_type):
|
123 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
124 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
125 |
+
from transformers import GPT2LMHeadModel
|
126 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
127 |
+
|
128 |
+
# n_layer, n_head and n_embd are determined from model_type
|
129 |
+
config_args = {
|
130 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
131 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
132 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
133 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
134 |
+
}[model_type]
|
135 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
136 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
137 |
+
# create a from-scratch initialized minGPT model
|
138 |
+
config = GPTConfig(**config_args)
|
139 |
+
model = GPT(config)
|
140 |
+
sd = model.state_dict()
|
141 |
+
sd_keys = sd.keys()
|
142 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
143 |
+
|
144 |
+
# init a huggingface/transformers model
|
145 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
146 |
+
sd_hf = model_hf.state_dict()
|
147 |
+
|
148 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
149 |
+
sd_keys_hf = sd_hf.keys()
|
150 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
151 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
152 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
153 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
154 |
+
# this means that we have to transpose these weights when we import them
|
155 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
156 |
+
for k in sd_keys_hf:
|
157 |
+
if any(k.endswith(w) for w in transposed):
|
158 |
+
# special treatment for the Conv1D weights we need to transpose
|
159 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
160 |
+
with torch.no_grad():
|
161 |
+
sd[k].copy_(sd_hf[k].t())
|
162 |
+
else:
|
163 |
+
# vanilla copy over the other parameters
|
164 |
+
assert sd_hf[k].shape == sd[k].shape
|
165 |
+
with torch.no_grad():
|
166 |
+
sd[k].copy_(sd_hf[k])
|
167 |
+
|
168 |
+
return model
|
169 |
+
|
170 |
+
# model = GPT.from_pretrained('gpt2')
|
171 |
+
|
172 |
+
device = 'cpu'
|
173 |
+
if torch.cuda.is_available():
|
174 |
+
device = 'cuda'
|
175 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
176 |
+
device = "mps"
|
177 |
+
print(f"using device: {device}")
|
178 |
+
print("didn't crash yet!")
|
179 |
+
# STOP
|
180 |
+
num_return_sequences = 5
|
181 |
+
max_length = 30
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
import tiktoken
|
186 |
+
enc = tiktoken.get_encoding('gpt2')
|
187 |
+
with open('input.txt', 'r') as f:
|
188 |
+
text = f.read()
|
189 |
+
|
190 |
+
text = text[:1000]
|
191 |
+
tokens = enc.encode(text)
|
192 |
+
B, T = 4, 32
|
193 |
+
buf = torch.tensor(tokens[:B*T + 1])
|
194 |
+
buf = buf.to(device)
|
195 |
+
x = buf[:-1].view(B, T)
|
196 |
+
y = buf[1:].view(B, T)
|
197 |
+
|
198 |
+
model = GPT(GPTConfig())
|
199 |
+
model.to(device)
|
200 |
+
|
201 |
+
# NEW CODE
|
202 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
203 |
+
for i in range(50):
|
204 |
+
optimizer.zero_grad()
|
205 |
+
logits, loss = model(x, y)
|
206 |
+
loss.backward()
|
207 |
+
optimizer.step()
|
208 |
+
print(f'step{i}, loss: {loss.item()}')
|
209 |
+
|
210 |
+
|
211 |
+
print(loss)
|
212 |
+
import sys; sys.exit(0)
|
213 |
+
|
214 |
+
torch.manual_seed(42)
|
215 |
+
torch.cuda.manual_seed(42)
|
216 |
+
while x.size(1) < max_length:
|
217 |
+
# forward the model to get the logits
|
218 |
+
with torch.no_grad():
|
219 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
220 |
+
# take the logits at the last position
|
221 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
222 |
+
# get the probabilities
|
223 |
+
probs = F.softmax(logits, dim=-1)
|
224 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
225 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
226 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
227 |
+
# select a token from the top-k probabilities
|
228 |
+
# note: multinomial does not demand the input to sum to 1
|
229 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
230 |
+
# gather the corresponding indices
|
231 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
232 |
+
# append to the sequence
|
233 |
+
x = torch.cat((x, xcol), dim=1)
|
234 |
+
|
235 |
+
# print the generated text
|
236 |
+
for i in range(num_return_sequences):
|
237 |
+
tokens = x[i, :max_length].tolist()
|
238 |
+
decoded = enc.decode(tokens)
|
239 |
+
print(">", decoded)
|
CodeFiles/train_get2-6.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DATALOADER
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
# regularization
|
22 |
+
self.n_head = config.n_head
|
23 |
+
self.n_embd = config.n_embd
|
24 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
28 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
29 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
30 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
31 |
+
qkv = self.c_attn(x)
|
32 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
33 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
34 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
|
37 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
38 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
39 |
+
att = F.softmax(att, dim=-1)
|
40 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
41 |
+
|
42 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
43 |
+
# output projection
|
44 |
+
y = self.c_proj(y)
|
45 |
+
return y
|
46 |
+
|
47 |
+
|
48 |
+
class MLP(nn.Module):
|
49 |
+
|
50 |
+
def __init__(self, config):
|
51 |
+
super().__init__()
|
52 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
53 |
+
self.gelu = nn.GELU(approximate='tanh')
|
54 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
55 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
x = self.c_fc(x)
|
59 |
+
x = self.gelu(x)
|
60 |
+
x = self.c_proj(x)
|
61 |
+
return x
|
62 |
+
|
63 |
+
class Block(nn.Module):
|
64 |
+
|
65 |
+
def __init__(self, config):
|
66 |
+
super().__init__()
|
67 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
68 |
+
self.attn = CausalSelfAttention(config)
|
69 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
70 |
+
self.mlp = MLP(config)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
x = x + self.attn(self.ln_1(x))
|
74 |
+
x = x + self.mlp(self.ln_2(x))
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
@dataclass
|
79 |
+
class GPTConfig:
|
80 |
+
block_size: int = 1024 # max sequence length
|
81 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
82 |
+
n_layer: int = 12 # number of layers
|
83 |
+
n_head: int = 12 # number of heads
|
84 |
+
n_embd: int = 768 # embedding dimension
|
85 |
+
|
86 |
+
|
87 |
+
class GPT(nn.Module):
|
88 |
+
|
89 |
+
def __init__(self, config):
|
90 |
+
super().__init__()
|
91 |
+
self.config = config
|
92 |
+
|
93 |
+
self.transformer = nn.ModuleDict(dict(
|
94 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
95 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
96 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
97 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
98 |
+
))
|
99 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
100 |
+
|
101 |
+
def forward(self, idx, targets=None):
|
102 |
+
# idx is of shape (B, T)
|
103 |
+
B, T = idx.size()
|
104 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
105 |
+
# forward the token and posisition embeddings
|
106 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
107 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
108 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
109 |
+
x = tok_emb + pos_emb
|
110 |
+
# forward the blocks of the transformer
|
111 |
+
for block in self.transformer.h:
|
112 |
+
x = block(x)
|
113 |
+
# forward the final layernorm and the classifier
|
114 |
+
x = self.transformer.ln_f(x)
|
115 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
116 |
+
loss = None
|
117 |
+
if targets is not None:
|
118 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
119 |
+
return logits, loss
|
120 |
+
|
121 |
+
@classmethod
|
122 |
+
def from_pretrained(cls, model_type):
|
123 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
124 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
125 |
+
from transformers import GPT2LMHeadModel
|
126 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
127 |
+
|
128 |
+
# n_layer, n_head and n_embd are determined from model_type
|
129 |
+
config_args = {
|
130 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
131 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
132 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
133 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
134 |
+
}[model_type]
|
135 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
136 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
137 |
+
# create a from-scratch initialized minGPT model
|
138 |
+
config = GPTConfig(**config_args)
|
139 |
+
model = GPT(config)
|
140 |
+
sd = model.state_dict()
|
141 |
+
sd_keys = sd.keys()
|
142 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
143 |
+
|
144 |
+
# init a huggingface/transformers model
|
145 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
146 |
+
sd_hf = model_hf.state_dict()
|
147 |
+
|
148 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
149 |
+
sd_keys_hf = sd_hf.keys()
|
150 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
151 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
152 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
153 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
154 |
+
# this means that we have to transpose these weights when we import them
|
155 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
156 |
+
for k in sd_keys_hf:
|
157 |
+
if any(k.endswith(w) for w in transposed):
|
158 |
+
# special treatment for the Conv1D weights we need to transpose
|
159 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
160 |
+
with torch.no_grad():
|
161 |
+
sd[k].copy_(sd_hf[k].t())
|
162 |
+
else:
|
163 |
+
# vanilla copy over the other parameters
|
164 |
+
assert sd_hf[k].shape == sd[k].shape
|
165 |
+
with torch.no_grad():
|
166 |
+
sd[k].copy_(sd_hf[k])
|
167 |
+
|
168 |
+
return model
|
169 |
+
|
170 |
+
# model = GPT.from_pretrained('gpt2')
|
171 |
+
|
172 |
+
device = 'cpu'
|
173 |
+
if torch.cuda.is_available():
|
174 |
+
device = 'cuda'
|
175 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
176 |
+
device = "mps"
|
177 |
+
print(f"using device: {device}")
|
178 |
+
|
179 |
+
# STOP
|
180 |
+
num_return_sequences = 5
|
181 |
+
max_length = 30
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
import tiktoken
|
186 |
+
|
187 |
+
class DataLoaderLite:
|
188 |
+
def __init__(self, B, T):
|
189 |
+
self.B = B
|
190 |
+
self.T = T
|
191 |
+
|
192 |
+
# at init load tokens from disk and store them in memory
|
193 |
+
with open('input.txt', 'r') as f:
|
194 |
+
text = f.read()
|
195 |
+
enc = tiktoken.get_encoding('gpt2')
|
196 |
+
tokens = enc.encode(text)
|
197 |
+
self.tokens = torch.tensor(tokens)
|
198 |
+
print(f'loaded {len(self.tokens)} tokens')
|
199 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
200 |
+
|
201 |
+
# state
|
202 |
+
self.current_position = 0
|
203 |
+
|
204 |
+
def next_batch(self):
|
205 |
+
B, T = self.B, self.T
|
206 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
207 |
+
x = (buf[:-1]).view(B, T) # inputs
|
208 |
+
y = (buf[1:]).view(B, T) # targets
|
209 |
+
# advance the position in the tensor
|
210 |
+
self.current_position += B*T
|
211 |
+
# if loading the next batch would be out of bounds, reset
|
212 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
213 |
+
self.current_position = 0
|
214 |
+
return x, y
|
215 |
+
|
216 |
+
|
217 |
+
model = GPT(GPTConfig())
|
218 |
+
model.to(device)
|
219 |
+
|
220 |
+
train_loader = DataLoaderLite(B = 4, T = 32)
|
221 |
+
|
222 |
+
# NEW CODE
|
223 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
224 |
+
for i in range(50):
|
225 |
+
x, y = train_loader.next_batch()
|
226 |
+
x, y = x.to(device), y.to(device)
|
227 |
+
optimizer.zero_grad()
|
228 |
+
logits, loss = model(x, y)
|
229 |
+
loss.backward()
|
230 |
+
optimizer.step()
|
231 |
+
print(f'step{i}, loss: {loss.item()}')
|
232 |
+
|
233 |
+
|
234 |
+
print(loss)
|
235 |
+
import sys; sys.exit(0)
|
236 |
+
|
237 |
+
torch.manual_seed(42)
|
238 |
+
torch.cuda.manual_seed(42)
|
239 |
+
while x.size(1) < max_length:
|
240 |
+
# forward the model to get the logits
|
241 |
+
with torch.no_grad():
|
242 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
243 |
+
# take the logits at the last position
|
244 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
245 |
+
# get the probabilities
|
246 |
+
probs = F.softmax(logits, dim=-1)
|
247 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
248 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
249 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
250 |
+
# select a token from the top-k probabilities
|
251 |
+
# note: multinomial does not demand the input to sum to 1
|
252 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
253 |
+
# gather the corresponding indices
|
254 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
255 |
+
# append to the sequence
|
256 |
+
x = torch.cat((x, xcol), dim=1)
|
257 |
+
|
258 |
+
# print the generated text
|
259 |
+
for i in range(num_return_sequences):
|
260 |
+
tokens = x[i, :max_length].tolist()
|
261 |
+
decoded = enc.decode(tokens)
|
262 |
+
print(">", decoded)
|
CodeFiles/train_get2-7.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Weight Sharing
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
# regularization
|
22 |
+
self.n_head = config.n_head
|
23 |
+
self.n_embd = config.n_embd
|
24 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
28 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
29 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
30 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
31 |
+
qkv = self.c_attn(x)
|
32 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
33 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
34 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
|
37 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
38 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
39 |
+
att = F.softmax(att, dim=-1)
|
40 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
41 |
+
|
42 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
43 |
+
# output projection
|
44 |
+
y = self.c_proj(y)
|
45 |
+
return y
|
46 |
+
|
47 |
+
|
48 |
+
class MLP(nn.Module):
|
49 |
+
|
50 |
+
def __init__(self, config):
|
51 |
+
super().__init__()
|
52 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
53 |
+
self.gelu = nn.GELU(approximate='tanh')
|
54 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
55 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
x = self.c_fc(x)
|
59 |
+
x = self.gelu(x)
|
60 |
+
x = self.c_proj(x)
|
61 |
+
return x
|
62 |
+
|
63 |
+
class Block(nn.Module):
|
64 |
+
|
65 |
+
def __init__(self, config):
|
66 |
+
super().__init__()
|
67 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
68 |
+
self.attn = CausalSelfAttention(config)
|
69 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
70 |
+
self.mlp = MLP(config)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
x = x + self.attn(self.ln_1(x))
|
74 |
+
x = x + self.mlp(self.ln_2(x))
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
@dataclass
|
79 |
+
class GPTConfig:
|
80 |
+
block_size: int = 1024 # max sequence length
|
81 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
82 |
+
n_layer: int = 12 # number of layers
|
83 |
+
n_head: int = 12 # number of heads
|
84 |
+
n_embd: int = 768 # embedding dimension
|
85 |
+
|
86 |
+
|
87 |
+
class GPT(nn.Module):
|
88 |
+
|
89 |
+
def __init__(self, config):
|
90 |
+
super().__init__()
|
91 |
+
self.config = config
|
92 |
+
|
93 |
+
self.transformer = nn.ModuleDict(dict(
|
94 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
95 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
96 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
97 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
98 |
+
))
|
99 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
100 |
+
|
101 |
+
# weight sharing
|
102 |
+
self.transformer.wte.weight = self.lm_head.weight
|
103 |
+
|
104 |
+
# weight initialization
|
105 |
+
self.apply(self._init_weights)
|
106 |
+
|
107 |
+
def _init_weights(self, module):
|
108 |
+
if isinstance(module, nn.Linear):
|
109 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = 0.02)
|
110 |
+
if module.bias is not None:
|
111 |
+
torch.nn.init.zeros_(module.bias)
|
112 |
+
elif isinstance(module, nn.Embedding):
|
113 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
def forward(self, idx, targets=None):
|
118 |
+
# idx is of shape (B, T)
|
119 |
+
B, T = idx.size()
|
120 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
121 |
+
# forward the token and posisition embeddings
|
122 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
123 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
124 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
125 |
+
x = tok_emb + pos_emb
|
126 |
+
# forward the blocks of the transformer
|
127 |
+
for block in self.transformer.h:
|
128 |
+
x = block(x)
|
129 |
+
# forward the final layernorm and the classifier
|
130 |
+
x = self.transformer.ln_f(x)
|
131 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
132 |
+
loss = None
|
133 |
+
if targets is not None:
|
134 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
135 |
+
return logits, loss
|
136 |
+
|
137 |
+
@classmethod
|
138 |
+
def from_pretrained(cls, model_type):
|
139 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
140 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
141 |
+
from transformers import GPT2LMHeadModel
|
142 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
143 |
+
|
144 |
+
# n_layer, n_head and n_embd are determined from model_type
|
145 |
+
config_args = {
|
146 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
147 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
148 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
149 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
150 |
+
}[model_type]
|
151 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
152 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
153 |
+
# create a from-scratch initialized minGPT model
|
154 |
+
config = GPTConfig(**config_args)
|
155 |
+
model = GPT(config)
|
156 |
+
sd = model.state_dict()
|
157 |
+
sd_keys = sd.keys()
|
158 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
159 |
+
|
160 |
+
# init a huggingface/transformers model
|
161 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
162 |
+
sd_hf = model_hf.state_dict()
|
163 |
+
|
164 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
165 |
+
sd_keys_hf = sd_hf.keys()
|
166 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
167 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
168 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
169 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
170 |
+
# this means that we have to transpose these weights when we import them
|
171 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
172 |
+
for k in sd_keys_hf:
|
173 |
+
if any(k.endswith(w) for w in transposed):
|
174 |
+
# special treatment for the Conv1D weights we need to transpose
|
175 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
176 |
+
with torch.no_grad():
|
177 |
+
sd[k].copy_(sd_hf[k].t())
|
178 |
+
else:
|
179 |
+
# vanilla copy over the other parameters
|
180 |
+
assert sd_hf[k].shape == sd[k].shape
|
181 |
+
with torch.no_grad():
|
182 |
+
sd[k].copy_(sd_hf[k])
|
183 |
+
|
184 |
+
return model
|
185 |
+
|
186 |
+
# model = GPT.from_pretrained('gpt2')
|
187 |
+
|
188 |
+
device = 'cpu'
|
189 |
+
if torch.cuda.is_available():
|
190 |
+
device = 'cuda'
|
191 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
192 |
+
device = "mps"
|
193 |
+
print(f"using device: {device}")
|
194 |
+
|
195 |
+
# STOP
|
196 |
+
num_return_sequences = 5
|
197 |
+
max_length = 30
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
import tiktoken
|
202 |
+
|
203 |
+
class DataLoaderLite:
|
204 |
+
def __init__(self, B, T):
|
205 |
+
self.B = B
|
206 |
+
self.T = T
|
207 |
+
|
208 |
+
# at init load tokens from disk and store them in memory
|
209 |
+
with open('input.txt', 'r') as f:
|
210 |
+
text = f.read()
|
211 |
+
enc = tiktoken.get_encoding('gpt2')
|
212 |
+
tokens = enc.encode(text)
|
213 |
+
self.tokens = torch.tensor(tokens)
|
214 |
+
print(f'loaded {len(self.tokens)} tokens')
|
215 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
216 |
+
|
217 |
+
# state
|
218 |
+
self.current_position = 0
|
219 |
+
|
220 |
+
def next_batch(self):
|
221 |
+
B, T = self.B, self.T
|
222 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
223 |
+
x = (buf[:-1]).view(B, T) # inputs
|
224 |
+
y = (buf[1:]).view(B, T) # targets
|
225 |
+
# advance the position in the tensor
|
226 |
+
self.current_position += B*T
|
227 |
+
# if loading the next batch would be out of bounds, reset
|
228 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
229 |
+
self.current_position = 0
|
230 |
+
return x, y
|
231 |
+
|
232 |
+
|
233 |
+
model = GPT(GPTConfig())
|
234 |
+
model.to(device)
|
235 |
+
|
236 |
+
train_loader = DataLoaderLite(B = 4, T = 32)
|
237 |
+
|
238 |
+
# NEW CODE
|
239 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
240 |
+
for i in range(50):
|
241 |
+
x, y = train_loader.next_batch()
|
242 |
+
x, y = x.to(device), y.to(device)
|
243 |
+
optimizer.zero_grad()
|
244 |
+
logits, loss = model(x, y)
|
245 |
+
loss.backward()
|
246 |
+
optimizer.step()
|
247 |
+
print(f'step{i}, loss: {loss.item()}')
|
248 |
+
|
249 |
+
|
250 |
+
print(loss)
|
251 |
+
import sys; sys.exit(0)
|
252 |
+
|
253 |
+
torch.manual_seed(42)
|
254 |
+
torch.cuda.manual_seed(42)
|
255 |
+
while x.size(1) < max_length:
|
256 |
+
# forward the model to get the logits
|
257 |
+
with torch.no_grad():
|
258 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
259 |
+
# take the logits at the last position
|
260 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
261 |
+
# get the probabilities
|
262 |
+
probs = F.softmax(logits, dim=-1)
|
263 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
264 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
265 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
266 |
+
# select a token from the top-k probabilities
|
267 |
+
# note: multinomial does not demand the input to sum to 1
|
268 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
269 |
+
# gather the corresponding indices
|
270 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
271 |
+
# append to the sequence
|
272 |
+
x = torch.cat((x, xcol), dim=1)
|
273 |
+
|
274 |
+
# print the generated text
|
275 |
+
for i in range(num_return_sequences):
|
276 |
+
tokens = x[i, :max_length].tolist()
|
277 |
+
decoded = enc.decode(tokens)
|
278 |
+
print(">", decoded)
|
CodeFiles/train_get2-8-init.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Solving for residual std scaling issue
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
22 |
+
# regularization
|
23 |
+
self.n_head = config.n_head
|
24 |
+
self.n_embd = config.n_embd
|
25 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
29 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
30 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
31 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
32 |
+
qkv = self.c_attn(x)
|
33 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
34 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
|
38 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
39 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
40 |
+
att = F.softmax(att, dim=-1)
|
41 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
42 |
+
|
43 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
44 |
+
# output projection
|
45 |
+
y = self.c_proj(y)
|
46 |
+
return y
|
47 |
+
|
48 |
+
|
49 |
+
class MLP(nn.Module):
|
50 |
+
|
51 |
+
def __init__(self, config):
|
52 |
+
super().__init__()
|
53 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
54 |
+
self.gelu = nn.GELU(approximate='tanh')
|
55 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
56 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
x = self.c_fc(x)
|
60 |
+
x = self.gelu(x)
|
61 |
+
x = self.c_proj(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
class Block(nn.Module):
|
65 |
+
|
66 |
+
def __init__(self, config):
|
67 |
+
super().__init__()
|
68 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
69 |
+
self.attn = CausalSelfAttention(config)
|
70 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
71 |
+
self.mlp = MLP(config)
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
x = x + self.attn(self.ln_1(x))
|
75 |
+
x = x + self.mlp(self.ln_2(x))
|
76 |
+
return x
|
77 |
+
|
78 |
+
|
79 |
+
@dataclass
|
80 |
+
class GPTConfig:
|
81 |
+
block_size: int = 1024 # max sequence length
|
82 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
83 |
+
n_layer: int = 12 # number of layers
|
84 |
+
n_head: int = 12 # number of heads
|
85 |
+
n_embd: int = 768 # embedding dimension
|
86 |
+
|
87 |
+
|
88 |
+
class GPT(nn.Module):
|
89 |
+
|
90 |
+
def __init__(self, config):
|
91 |
+
super().__init__()
|
92 |
+
self.config = config
|
93 |
+
|
94 |
+
self.transformer = nn.ModuleDict(dict(
|
95 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
96 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
97 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
98 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
99 |
+
))
|
100 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
101 |
+
|
102 |
+
# weight sharing
|
103 |
+
self.transformer.wte.weight = self.lm_head.weight
|
104 |
+
|
105 |
+
# weight initialization
|
106 |
+
self.apply(self._init_weights)
|
107 |
+
|
108 |
+
def _init_weights(self, module):
|
109 |
+
if isinstance(module, nn.Linear):
|
110 |
+
std = 0.02
|
111 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
112 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
113 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
114 |
+
if module.bias is not None:
|
115 |
+
torch.nn.init.zeros_(module.bias)
|
116 |
+
elif isinstance(module, nn.Embedding):
|
117 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, idx, targets=None):
|
122 |
+
# idx is of shape (B, T)
|
123 |
+
B, T = idx.size()
|
124 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
125 |
+
# forward the token and posisition embeddings
|
126 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
127 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
128 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
129 |
+
x = tok_emb + pos_emb
|
130 |
+
# forward the blocks of the transformer
|
131 |
+
for block in self.transformer.h:
|
132 |
+
x = block(x)
|
133 |
+
# forward the final layernorm and the classifier
|
134 |
+
x = self.transformer.ln_f(x)
|
135 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
136 |
+
loss = None
|
137 |
+
if targets is not None:
|
138 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
139 |
+
return logits, loss
|
140 |
+
|
141 |
+
@classmethod
|
142 |
+
def from_pretrained(cls, model_type):
|
143 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
144 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
145 |
+
from transformers import GPT2LMHeadModel
|
146 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
147 |
+
|
148 |
+
# n_layer, n_head and n_embd are determined from model_type
|
149 |
+
config_args = {
|
150 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
151 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
152 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
153 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
154 |
+
}[model_type]
|
155 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
156 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
157 |
+
# create a from-scratch initialized minGPT model
|
158 |
+
config = GPTConfig(**config_args)
|
159 |
+
model = GPT(config)
|
160 |
+
sd = model.state_dict()
|
161 |
+
sd_keys = sd.keys()
|
162 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
163 |
+
|
164 |
+
# init a huggingface/transformers model
|
165 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
166 |
+
sd_hf = model_hf.state_dict()
|
167 |
+
|
168 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
169 |
+
sd_keys_hf = sd_hf.keys()
|
170 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
171 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
172 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
173 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
174 |
+
# this means that we have to transpose these weights when we import them
|
175 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
176 |
+
for k in sd_keys_hf:
|
177 |
+
if any(k.endswith(w) for w in transposed):
|
178 |
+
# special treatment for the Conv1D weights we need to transpose
|
179 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
180 |
+
with torch.no_grad():
|
181 |
+
sd[k].copy_(sd_hf[k].t())
|
182 |
+
else:
|
183 |
+
# vanilla copy over the other parameters
|
184 |
+
assert sd_hf[k].shape == sd[k].shape
|
185 |
+
with torch.no_grad():
|
186 |
+
sd[k].copy_(sd_hf[k])
|
187 |
+
|
188 |
+
return model
|
189 |
+
|
190 |
+
# model = GPT.from_pretrained('gpt2')
|
191 |
+
|
192 |
+
device = 'cpu'
|
193 |
+
if torch.cuda.is_available():
|
194 |
+
device = 'cuda'
|
195 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
196 |
+
device = "mps"
|
197 |
+
print(f"using device: {device}")
|
198 |
+
|
199 |
+
# SEED
|
200 |
+
torch.manual_seed(1337)
|
201 |
+
if torch.cuda.is_available():
|
202 |
+
torch.cuda.manual_seed(1337)
|
203 |
+
|
204 |
+
# STOP
|
205 |
+
num_return_sequences = 5
|
206 |
+
max_length = 30
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
import tiktoken
|
211 |
+
|
212 |
+
class DataLoaderLite:
|
213 |
+
def __init__(self, B, T):
|
214 |
+
self.B = B
|
215 |
+
self.T = T
|
216 |
+
|
217 |
+
# at init load tokens from disk and store them in memory
|
218 |
+
with open('input.txt', 'r') as f:
|
219 |
+
text = f.read()
|
220 |
+
enc = tiktoken.get_encoding('gpt2')
|
221 |
+
tokens = enc.encode(text)
|
222 |
+
self.tokens = torch.tensor(tokens)
|
223 |
+
print(f'loaded {len(self.tokens)} tokens')
|
224 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
225 |
+
|
226 |
+
# state
|
227 |
+
self.current_position = 0
|
228 |
+
|
229 |
+
def next_batch(self):
|
230 |
+
B, T = self.B, self.T
|
231 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
232 |
+
x = (buf[:-1]).view(B, T) # inputs
|
233 |
+
y = (buf[1:]).view(B, T) # targets
|
234 |
+
# advance the position in the tensor
|
235 |
+
self.current_position += B*T
|
236 |
+
# if loading the next batch would be out of bounds, reset
|
237 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
238 |
+
self.current_position = 0
|
239 |
+
return x, y
|
240 |
+
|
241 |
+
|
242 |
+
model = GPT(GPTConfig())
|
243 |
+
model.to(device)
|
244 |
+
|
245 |
+
train_loader = DataLoaderLite(B = 4, T = 32)
|
246 |
+
|
247 |
+
# NEW CODE
|
248 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
249 |
+
for i in range(50):
|
250 |
+
x, y = train_loader.next_batch()
|
251 |
+
x, y = x.to(device), y.to(device)
|
252 |
+
optimizer.zero_grad()
|
253 |
+
logits, loss = model(x, y)
|
254 |
+
loss.backward()
|
255 |
+
optimizer.step()
|
256 |
+
print(f'step{i}, loss: {loss.item()}')
|
257 |
+
|
258 |
+
|
259 |
+
print(loss)
|
260 |
+
import sys; sys.exit(0)
|
261 |
+
|
262 |
+
torch.manual_seed(42)
|
263 |
+
torch.cuda.manual_seed(42)
|
264 |
+
while x.size(1) < max_length:
|
265 |
+
# forward the model to get the logits
|
266 |
+
with torch.no_grad():
|
267 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
268 |
+
# take the logits at the last position
|
269 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
270 |
+
# get the probabilities
|
271 |
+
probs = F.softmax(logits, dim=-1)
|
272 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
273 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
274 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
275 |
+
# select a token from the top-k probabilities
|
276 |
+
# note: multinomial does not demand the input to sum to 1
|
277 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
278 |
+
# gather the corresponding indices
|
279 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
280 |
+
# append to the sequence
|
281 |
+
x = torch.cat((x, xcol), dim=1)
|
282 |
+
|
283 |
+
# print the generated text
|
284 |
+
for i in range(num_return_sequences):
|
285 |
+
tokens = x[i, :max_length].tolist()
|
286 |
+
decoded = enc.decode(tokens)
|
287 |
+
print(">", decoded)
|
CodeFiles/train_get2-9-speedup1.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Solving for residual std scaling issue
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
22 |
+
# regularization
|
23 |
+
self.n_head = config.n_head
|
24 |
+
self.n_embd = config.n_embd
|
25 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
29 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
30 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
31 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
32 |
+
qkv = self.c_attn(x)
|
33 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
34 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
|
38 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
39 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
40 |
+
att = F.softmax(att, dim=-1)
|
41 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
42 |
+
|
43 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
44 |
+
# output projection
|
45 |
+
y = self.c_proj(y)
|
46 |
+
return y
|
47 |
+
|
48 |
+
|
49 |
+
class MLP(nn.Module):
|
50 |
+
|
51 |
+
def __init__(self, config):
|
52 |
+
super().__init__()
|
53 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
54 |
+
self.gelu = nn.GELU(approximate='tanh')
|
55 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
56 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
x = self.c_fc(x)
|
60 |
+
x = self.gelu(x)
|
61 |
+
x = self.c_proj(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
class Block(nn.Module):
|
65 |
+
|
66 |
+
def __init__(self, config):
|
67 |
+
super().__init__()
|
68 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
69 |
+
self.attn = CausalSelfAttention(config)
|
70 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
71 |
+
self.mlp = MLP(config)
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
x = x + self.attn(self.ln_1(x))
|
75 |
+
x = x + self.mlp(self.ln_2(x))
|
76 |
+
return x
|
77 |
+
|
78 |
+
|
79 |
+
@dataclass
|
80 |
+
class GPTConfig:
|
81 |
+
block_size: int = 1024 # max sequence length
|
82 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
83 |
+
n_layer: int = 12 # number of layers
|
84 |
+
n_head: int = 12 # number of heads
|
85 |
+
n_embd: int = 768 # embedding dimension
|
86 |
+
|
87 |
+
|
88 |
+
class GPT(nn.Module):
|
89 |
+
|
90 |
+
def __init__(self, config):
|
91 |
+
super().__init__()
|
92 |
+
self.config = config
|
93 |
+
|
94 |
+
self.transformer = nn.ModuleDict(dict(
|
95 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
96 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
97 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
98 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
99 |
+
))
|
100 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
101 |
+
|
102 |
+
# weight sharing
|
103 |
+
self.transformer.wte.weight = self.lm_head.weight
|
104 |
+
|
105 |
+
# weight initialization
|
106 |
+
self.apply(self._init_weights)
|
107 |
+
|
108 |
+
def _init_weights(self, module):
|
109 |
+
if isinstance(module, nn.Linear):
|
110 |
+
std = 0.02
|
111 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
112 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
113 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
114 |
+
if module.bias is not None:
|
115 |
+
torch.nn.init.zeros_(module.bias)
|
116 |
+
elif isinstance(module, nn.Embedding):
|
117 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, idx, targets=None):
|
122 |
+
# idx is of shape (B, T)
|
123 |
+
B, T = idx.size()
|
124 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
125 |
+
# forward the token and posisition embeddings
|
126 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
127 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
128 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
129 |
+
x = tok_emb + pos_emb
|
130 |
+
# forward the blocks of the transformer
|
131 |
+
for block in self.transformer.h:
|
132 |
+
x = block(x)
|
133 |
+
# forward the final layernorm and the classifier
|
134 |
+
x = self.transformer.ln_f(x)
|
135 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
136 |
+
loss = None
|
137 |
+
if targets is not None:
|
138 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
139 |
+
return logits, loss
|
140 |
+
|
141 |
+
@classmethod
|
142 |
+
def from_pretrained(cls, model_type):
|
143 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
144 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
145 |
+
from transformers import GPT2LMHeadModel
|
146 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
147 |
+
|
148 |
+
# n_layer, n_head and n_embd are determined from model_type
|
149 |
+
config_args = {
|
150 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
151 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
152 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
153 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
154 |
+
}[model_type]
|
155 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
156 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
157 |
+
# create a from-scratch initialized minGPT model
|
158 |
+
config = GPTConfig(**config_args)
|
159 |
+
model = GPT(config)
|
160 |
+
sd = model.state_dict()
|
161 |
+
sd_keys = sd.keys()
|
162 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
163 |
+
|
164 |
+
# init a huggingface/transformers model
|
165 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
166 |
+
sd_hf = model_hf.state_dict()
|
167 |
+
|
168 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
169 |
+
sd_keys_hf = sd_hf.keys()
|
170 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
171 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
172 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
173 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
174 |
+
# this means that we have to transpose these weights when we import them
|
175 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
176 |
+
for k in sd_keys_hf:
|
177 |
+
if any(k.endswith(w) for w in transposed):
|
178 |
+
# special treatment for the Conv1D weights we need to transpose
|
179 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
180 |
+
with torch.no_grad():
|
181 |
+
sd[k].copy_(sd_hf[k].t())
|
182 |
+
else:
|
183 |
+
# vanilla copy over the other parameters
|
184 |
+
assert sd_hf[k].shape == sd[k].shape
|
185 |
+
with torch.no_grad():
|
186 |
+
sd[k].copy_(sd_hf[k])
|
187 |
+
|
188 |
+
return model
|
189 |
+
|
190 |
+
# model = GPT.from_pretrained('gpt2')
|
191 |
+
|
192 |
+
device = 'cpu'
|
193 |
+
if torch.cuda.is_available():
|
194 |
+
device = 'cuda'
|
195 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
196 |
+
device = "mps"
|
197 |
+
print(f"using device: {device}")
|
198 |
+
|
199 |
+
# SEED
|
200 |
+
torch.manual_seed(1337)
|
201 |
+
if torch.cuda.is_available():
|
202 |
+
torch.cuda.manual_seed(1337)
|
203 |
+
|
204 |
+
# STOP
|
205 |
+
num_return_sequences = 5
|
206 |
+
max_length = 30
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
import tiktoken
|
211 |
+
|
212 |
+
class DataLoaderLite:
|
213 |
+
def __init__(self, B, T):
|
214 |
+
self.B = B
|
215 |
+
self.T = T
|
216 |
+
|
217 |
+
# at init load tokens from disk and store them in memory
|
218 |
+
with open('input.txt', 'r') as f:
|
219 |
+
text = f.read()
|
220 |
+
enc = tiktoken.get_encoding('gpt2')
|
221 |
+
tokens = enc.encode(text)
|
222 |
+
self.tokens = torch.tensor(tokens)
|
223 |
+
print(f'loaded {len(self.tokens)} tokens')
|
224 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
225 |
+
|
226 |
+
# state
|
227 |
+
self.current_position = 0
|
228 |
+
|
229 |
+
def next_batch(self):
|
230 |
+
B, T = self.B, self.T
|
231 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
232 |
+
x = (buf[:-1]).view(B, T) # inputs
|
233 |
+
y = (buf[1:]).view(B, T) # targets
|
234 |
+
# advance the position in the tensor
|
235 |
+
self.current_position += B*T
|
236 |
+
# if loading the next batch would be out of bounds, reset
|
237 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
238 |
+
self.current_position = 0
|
239 |
+
return x, y
|
240 |
+
|
241 |
+
|
242 |
+
model = GPT(GPTConfig())
|
243 |
+
model.to(device)
|
244 |
+
|
245 |
+
train_loader = DataLoaderLite(B = 8, T = 1024)
|
246 |
+
|
247 |
+
# NEW CODE
|
248 |
+
import time
|
249 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
250 |
+
for i in range(50):
|
251 |
+
t0 = time.time()
|
252 |
+
x, y = train_loader.next_batch()
|
253 |
+
x, y = x.to(device), y.to(device)
|
254 |
+
optimizer.zero_grad()
|
255 |
+
logits, loss = model(x, y)
|
256 |
+
loss.backward()
|
257 |
+
optimizer.step()
|
258 |
+
torch.cuda.synchronize()
|
259 |
+
t1 = time.time()
|
260 |
+
dt = (t1 - t0) * 1000
|
261 |
+
tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0)
|
262 |
+
print(f'step{i} | loss: {loss.item()} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec: .2f}')
|
263 |
+
|
264 |
+
|
265 |
+
print(loss)
|
266 |
+
import sys; sys.exit(0)
|
267 |
+
|
268 |
+
torch.manual_seed(42)
|
269 |
+
torch.cuda.manual_seed(42)
|
270 |
+
while x.size(1) < max_length:
|
271 |
+
# forward the model to get the logits
|
272 |
+
with torch.no_grad():
|
273 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
274 |
+
# take the logits at the last position
|
275 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
276 |
+
# get the probabilities
|
277 |
+
probs = F.softmax(logits, dim=-1)
|
278 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
279 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
280 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
281 |
+
# select a token from the top-k probabilities
|
282 |
+
# note: multinomial does not demand the input to sum to 1
|
283 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
284 |
+
# gather the corresponding indices
|
285 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
286 |
+
# append to the sequence
|
287 |
+
x = torch.cat((x, xcol), dim=1)
|
288 |
+
|
289 |
+
# print the generated text
|
290 |
+
for i in range(num_return_sequences):
|
291 |
+
tokens = x[i, :max_length].tolist()
|
292 |
+
decoded = enc.decode(tokens)
|
293 |
+
print(">", decoded)
|
CodeFiles/train_get2-9-speedup2.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Solving for residual std scaling issue
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
22 |
+
# regularization
|
23 |
+
self.n_head = config.n_head
|
24 |
+
self.n_embd = config.n_embd
|
25 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
29 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
30 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
31 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
32 |
+
qkv = self.c_attn(x)
|
33 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
34 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
|
38 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
39 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
40 |
+
att = F.softmax(att, dim=-1)
|
41 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
42 |
+
|
43 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
44 |
+
# output projection
|
45 |
+
y = self.c_proj(y)
|
46 |
+
return y
|
47 |
+
|
48 |
+
|
49 |
+
class MLP(nn.Module):
|
50 |
+
|
51 |
+
def __init__(self, config):
|
52 |
+
super().__init__()
|
53 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
54 |
+
self.gelu = nn.GELU(approximate='tanh')
|
55 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
56 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
x = self.c_fc(x)
|
60 |
+
x = self.gelu(x)
|
61 |
+
x = self.c_proj(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
class Block(nn.Module):
|
65 |
+
|
66 |
+
def __init__(self, config):
|
67 |
+
super().__init__()
|
68 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
69 |
+
self.attn = CausalSelfAttention(config)
|
70 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
71 |
+
self.mlp = MLP(config)
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
x = x + self.attn(self.ln_1(x))
|
75 |
+
x = x + self.mlp(self.ln_2(x))
|
76 |
+
return x
|
77 |
+
|
78 |
+
|
79 |
+
@dataclass
|
80 |
+
class GPTConfig:
|
81 |
+
block_size: int = 1024 # max sequence length
|
82 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
83 |
+
n_layer: int = 12 # number of layers
|
84 |
+
n_head: int = 12 # number of heads
|
85 |
+
n_embd: int = 768 # embedding dimension
|
86 |
+
|
87 |
+
|
88 |
+
class GPT(nn.Module):
|
89 |
+
|
90 |
+
def __init__(self, config):
|
91 |
+
super().__init__()
|
92 |
+
self.config = config
|
93 |
+
|
94 |
+
self.transformer = nn.ModuleDict(dict(
|
95 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
96 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
97 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
98 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
99 |
+
))
|
100 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
101 |
+
|
102 |
+
# weight sharing
|
103 |
+
self.transformer.wte.weight = self.lm_head.weight
|
104 |
+
|
105 |
+
# weight initialization
|
106 |
+
self.apply(self._init_weights)
|
107 |
+
|
108 |
+
def _init_weights(self, module):
|
109 |
+
if isinstance(module, nn.Linear):
|
110 |
+
std = 0.02
|
111 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
112 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
113 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
114 |
+
if module.bias is not None:
|
115 |
+
torch.nn.init.zeros_(module.bias)
|
116 |
+
elif isinstance(module, nn.Embedding):
|
117 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, idx, targets=None):
|
122 |
+
# idx is of shape (B, T)
|
123 |
+
B, T = idx.size()
|
124 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
125 |
+
# forward the token and posisition embeddings
|
126 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
127 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
128 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
129 |
+
x = tok_emb + pos_emb
|
130 |
+
# forward the blocks of the transformer
|
131 |
+
for block in self.transformer.h:
|
132 |
+
x = block(x)
|
133 |
+
# forward the final layernorm and the classifier
|
134 |
+
x = self.transformer.ln_f(x)
|
135 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
136 |
+
loss = None
|
137 |
+
if targets is not None:
|
138 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
139 |
+
return logits, loss
|
140 |
+
|
141 |
+
@classmethod
|
142 |
+
def from_pretrained(cls, model_type):
|
143 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
144 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
145 |
+
from transformers import GPT2LMHeadModel
|
146 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
147 |
+
|
148 |
+
# n_layer, n_head and n_embd are determined from model_type
|
149 |
+
config_args = {
|
150 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
151 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
152 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
153 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
154 |
+
}[model_type]
|
155 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
156 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
157 |
+
# create a from-scratch initialized minGPT model
|
158 |
+
config = GPTConfig(**config_args)
|
159 |
+
model = GPT(config)
|
160 |
+
sd = model.state_dict()
|
161 |
+
sd_keys = sd.keys()
|
162 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
163 |
+
|
164 |
+
# init a huggingface/transformers model
|
165 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
166 |
+
sd_hf = model_hf.state_dict()
|
167 |
+
|
168 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
169 |
+
sd_keys_hf = sd_hf.keys()
|
170 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
171 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
172 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
173 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
174 |
+
# this means that we have to transpose these weights when we import them
|
175 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
176 |
+
for k in sd_keys_hf:
|
177 |
+
if any(k.endswith(w) for w in transposed):
|
178 |
+
# special treatment for the Conv1D weights we need to transpose
|
179 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
180 |
+
with torch.no_grad():
|
181 |
+
sd[k].copy_(sd_hf[k].t())
|
182 |
+
else:
|
183 |
+
# vanilla copy over the other parameters
|
184 |
+
assert sd_hf[k].shape == sd[k].shape
|
185 |
+
with torch.no_grad():
|
186 |
+
sd[k].copy_(sd_hf[k])
|
187 |
+
|
188 |
+
return model
|
189 |
+
|
190 |
+
# model = GPT.from_pretrained('gpt2')
|
191 |
+
|
192 |
+
device = 'cpu'
|
193 |
+
if torch.cuda.is_available():
|
194 |
+
device = 'cuda'
|
195 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
196 |
+
device = "mps"
|
197 |
+
print(f"using device: {device}")
|
198 |
+
|
199 |
+
# SEED
|
200 |
+
torch.manual_seed(1337)
|
201 |
+
if torch.cuda.is_available():
|
202 |
+
torch.cuda.manual_seed(1337)
|
203 |
+
|
204 |
+
# STOP
|
205 |
+
num_return_sequences = 5
|
206 |
+
max_length = 30
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
import tiktoken
|
211 |
+
|
212 |
+
class DataLoaderLite:
|
213 |
+
def __init__(self, B, T):
|
214 |
+
self.B = B
|
215 |
+
self.T = T
|
216 |
+
|
217 |
+
# at init load tokens from disk and store them in memory
|
218 |
+
with open('input.txt', 'r') as f:
|
219 |
+
text = f.read()
|
220 |
+
enc = tiktoken.get_encoding('gpt2')
|
221 |
+
tokens = enc.encode(text)
|
222 |
+
self.tokens = torch.tensor(tokens)
|
223 |
+
print(f'loaded {len(self.tokens)} tokens')
|
224 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
225 |
+
|
226 |
+
# state
|
227 |
+
self.current_position = 0
|
228 |
+
|
229 |
+
def next_batch(self):
|
230 |
+
B, T = self.B, self.T
|
231 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
232 |
+
x = (buf[:-1]).view(B, T) # inputs
|
233 |
+
y = (buf[1:]).view(B, T) # targets
|
234 |
+
# advance the position in the tensor
|
235 |
+
self.current_position += B*T
|
236 |
+
# if loading the next batch would be out of bounds, reset
|
237 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
238 |
+
self.current_position = 0
|
239 |
+
return x, y
|
240 |
+
|
241 |
+
# CHANGES IN CURRENT CODE
|
242 |
+
torch.set_float32_matmul_precision('high')
|
243 |
+
|
244 |
+
model = GPT(GPTConfig())
|
245 |
+
model.to(device)
|
246 |
+
|
247 |
+
train_loader = DataLoaderLite(B = 8, T = 1024)
|
248 |
+
|
249 |
+
# NEW CODE
|
250 |
+
import time
|
251 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
252 |
+
for i in range(50):
|
253 |
+
t0 = time.time()
|
254 |
+
x, y = train_loader.next_batch()
|
255 |
+
x, y = x.to(device), y.to(device)
|
256 |
+
optimizer.zero_grad()
|
257 |
+
logits, loss = model(x, y)
|
258 |
+
loss.backward()
|
259 |
+
optimizer.step()
|
260 |
+
torch.cuda.synchronize()
|
261 |
+
t1 = time.time()
|
262 |
+
dt = (t1 - t0) * 1000
|
263 |
+
tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0)
|
264 |
+
print(f'step{i} | loss: {loss.item()} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec: .2f}')
|
265 |
+
|
266 |
+
|
267 |
+
print(loss)
|
268 |
+
import sys; sys.exit(0)
|
269 |
+
|
270 |
+
torch.manual_seed(42)
|
271 |
+
torch.cuda.manual_seed(42)
|
272 |
+
while x.size(1) < max_length:
|
273 |
+
# forward the model to get the logits
|
274 |
+
with torch.no_grad():
|
275 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
276 |
+
# take the logits at the last position
|
277 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
278 |
+
# get the probabilities
|
279 |
+
probs = F.softmax(logits, dim=-1)
|
280 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
281 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
282 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
283 |
+
# select a token from the top-k probabilities
|
284 |
+
# note: multinomial does not demand the input to sum to 1
|
285 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
286 |
+
# gather the corresponding indices
|
287 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
288 |
+
# append to the sequence
|
289 |
+
x = torch.cat((x, xcol), dim=1)
|
290 |
+
|
291 |
+
# print the generated text
|
292 |
+
for i in range(num_return_sequences):
|
293 |
+
tokens = x[i, :max_length].tolist()
|
294 |
+
decoded = enc.decode(tokens)
|
295 |
+
print(">", decoded)
|
CodeFiles/train_get2-9-speedup3.py
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Logits and Loss
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
22 |
+
# regularization
|
23 |
+
self.n_head = config.n_head
|
24 |
+
self.n_embd = config.n_embd
|
25 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
29 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
30 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
31 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
32 |
+
qkv = self.c_attn(x)
|
33 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
34 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
|
38 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
39 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
40 |
+
att = F.softmax(att, dim=-1)
|
41 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
42 |
+
|
43 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
44 |
+
# output projection
|
45 |
+
y = self.c_proj(y)
|
46 |
+
return y
|
47 |
+
|
48 |
+
|
49 |
+
class MLP(nn.Module):
|
50 |
+
|
51 |
+
def __init__(self, config):
|
52 |
+
super().__init__()
|
53 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
54 |
+
self.gelu = nn.GELU(approximate='tanh')
|
55 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
56 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
x = self.c_fc(x)
|
60 |
+
x = self.gelu(x)
|
61 |
+
x = self.c_proj(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
class Block(nn.Module):
|
65 |
+
|
66 |
+
def __init__(self, config):
|
67 |
+
super().__init__()
|
68 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
69 |
+
self.attn = CausalSelfAttention(config)
|
70 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
71 |
+
self.mlp = MLP(config)
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
x = x + self.attn(self.ln_1(x))
|
75 |
+
x = x + self.mlp(self.ln_2(x))
|
76 |
+
return x
|
77 |
+
|
78 |
+
|
79 |
+
@dataclass
|
80 |
+
class GPTConfig:
|
81 |
+
block_size: int = 1024 # max sequence length
|
82 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
83 |
+
n_layer: int = 12 # number of layers
|
84 |
+
n_head: int = 12 # number of heads
|
85 |
+
n_embd: int = 768 # embedding dimension
|
86 |
+
|
87 |
+
|
88 |
+
class GPT(nn.Module):
|
89 |
+
|
90 |
+
def __init__(self, config):
|
91 |
+
super().__init__()
|
92 |
+
self.config = config
|
93 |
+
|
94 |
+
self.transformer = nn.ModuleDict(dict(
|
95 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
96 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
97 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
98 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
99 |
+
))
|
100 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
101 |
+
|
102 |
+
# weight sharing
|
103 |
+
self.transformer.wte.weight = self.lm_head.weight
|
104 |
+
|
105 |
+
# weight initialization
|
106 |
+
self.apply(self._init_weights)
|
107 |
+
|
108 |
+
def _init_weights(self, module):
|
109 |
+
if isinstance(module, nn.Linear):
|
110 |
+
std = 0.02
|
111 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
112 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
113 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
114 |
+
if module.bias is not None:
|
115 |
+
torch.nn.init.zeros_(module.bias)
|
116 |
+
elif isinstance(module, nn.Embedding):
|
117 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, idx, targets=None):
|
122 |
+
# idx is of shape (B, T)
|
123 |
+
B, T = idx.size()
|
124 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
125 |
+
# forward the token and posisition embeddings
|
126 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
127 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
128 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
129 |
+
x = tok_emb + pos_emb
|
130 |
+
# forward the blocks of the transformer
|
131 |
+
for block in self.transformer.h:
|
132 |
+
x = block(x)
|
133 |
+
# forward the final layernorm and the classifier
|
134 |
+
x = self.transformer.ln_f(x)
|
135 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
136 |
+
loss = None
|
137 |
+
if targets is not None:
|
138 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
139 |
+
return logits, loss
|
140 |
+
|
141 |
+
@classmethod
|
142 |
+
def from_pretrained(cls, model_type):
|
143 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
144 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
145 |
+
from transformers import GPT2LMHeadModel
|
146 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
147 |
+
|
148 |
+
# n_layer, n_head and n_embd are determined from model_type
|
149 |
+
config_args = {
|
150 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
151 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
152 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
153 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
154 |
+
}[model_type]
|
155 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
156 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
157 |
+
# create a from-scratch initialized minGPT model
|
158 |
+
config = GPTConfig(**config_args)
|
159 |
+
model = GPT(config)
|
160 |
+
sd = model.state_dict()
|
161 |
+
sd_keys = sd.keys()
|
162 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
163 |
+
|
164 |
+
# init a huggingface/transformers model
|
165 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
166 |
+
sd_hf = model_hf.state_dict()
|
167 |
+
|
168 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
169 |
+
sd_keys_hf = sd_hf.keys()
|
170 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
171 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
172 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
173 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
174 |
+
# this means that we have to transpose these weights when we import them
|
175 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
176 |
+
for k in sd_keys_hf:
|
177 |
+
if any(k.endswith(w) for w in transposed):
|
178 |
+
# special treatment for the Conv1D weights we need to transpose
|
179 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
180 |
+
with torch.no_grad():
|
181 |
+
sd[k].copy_(sd_hf[k].t())
|
182 |
+
else:
|
183 |
+
# vanilla copy over the other parameters
|
184 |
+
assert sd_hf[k].shape == sd[k].shape
|
185 |
+
with torch.no_grad():
|
186 |
+
sd[k].copy_(sd_hf[k])
|
187 |
+
|
188 |
+
return model
|
189 |
+
|
190 |
+
# model = GPT.from_pretrained('gpt2')
|
191 |
+
|
192 |
+
device = 'cpu'
|
193 |
+
if torch.cuda.is_available():
|
194 |
+
device = 'cuda'
|
195 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
196 |
+
device = "mps"
|
197 |
+
print(f"using device: {device}")
|
198 |
+
|
199 |
+
# SEED
|
200 |
+
torch.manual_seed(1337)
|
201 |
+
if torch.cuda.is_available():
|
202 |
+
torch.cuda.manual_seed(1337)
|
203 |
+
|
204 |
+
# STOP
|
205 |
+
num_return_sequences = 5
|
206 |
+
max_length = 30
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
import tiktoken
|
211 |
+
|
212 |
+
class DataLoaderLite:
|
213 |
+
def __init__(self, B, T):
|
214 |
+
self.B = B
|
215 |
+
self.T = T
|
216 |
+
|
217 |
+
# at init load tokens from disk and store them in memory
|
218 |
+
with open('input.txt', 'r') as f:
|
219 |
+
text = f.read()
|
220 |
+
enc = tiktoken.get_encoding('gpt2')
|
221 |
+
tokens = enc.encode(text)
|
222 |
+
self.tokens = torch.tensor(tokens)
|
223 |
+
print(f'loaded {len(self.tokens)} tokens')
|
224 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
225 |
+
|
226 |
+
# state
|
227 |
+
self.current_position = 0
|
228 |
+
|
229 |
+
def next_batch(self):
|
230 |
+
B, T = self.B, self.T
|
231 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
232 |
+
x = (buf[:-1]).view(B, T) # inputs
|
233 |
+
y = (buf[1:]).view(B, T) # targets
|
234 |
+
# advance the position in the tensor
|
235 |
+
self.current_position += B*T
|
236 |
+
# if loading the next batch would be out of bounds, reset
|
237 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
238 |
+
self.current_position = 0
|
239 |
+
return x, y
|
240 |
+
|
241 |
+
# CHANGES IN CURRENT CODE
|
242 |
+
torch.set_float32_matmul_precision('high')
|
243 |
+
|
244 |
+
model = GPT(GPTConfig())
|
245 |
+
model.to(device)
|
246 |
+
|
247 |
+
train_loader = DataLoaderLite(B = 8, T = 1024)
|
248 |
+
|
249 |
+
# NEW CODE
|
250 |
+
import time
|
251 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
252 |
+
for i in range(50):
|
253 |
+
t0 = time.time()
|
254 |
+
x, y = train_loader.next_batch()
|
255 |
+
x, y = x.to(device), y.to(device)
|
256 |
+
optimizer.zero_grad()
|
257 |
+
# NEW CODE ADDED HERE
|
258 |
+
with torch.autocast(device_type=device, dtype=torch.bfloat16):
|
259 |
+
logits, loss = model(x, y)
|
260 |
+
loss.backward()
|
261 |
+
optimizer.step()
|
262 |
+
torch.cuda.synchronize()
|
263 |
+
t1 = time.time()
|
264 |
+
dt = (t1 - t0) * 1000
|
265 |
+
tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0)
|
266 |
+
print(f'step{i} | loss: {loss.item()} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec: .2f}')
|
267 |
+
|
268 |
+
|
269 |
+
print(loss)
|
270 |
+
import sys; sys.exit(0)
|
271 |
+
|
272 |
+
torch.manual_seed(42)
|
273 |
+
torch.cuda.manual_seed(42)
|
274 |
+
while x.size(1) < max_length:
|
275 |
+
# forward the model to get the logits
|
276 |
+
with torch.no_grad():
|
277 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
278 |
+
# take the logits at the last position
|
279 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
280 |
+
# get the probabilities
|
281 |
+
probs = F.softmax(logits, dim=-1)
|
282 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
283 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
284 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
285 |
+
# select a token from the top-k probabilities
|
286 |
+
# note: multinomial does not demand the input to sum to 1
|
287 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
288 |
+
# gather the corresponding indices
|
289 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
290 |
+
# append to the sequence
|
291 |
+
x = torch.cat((x, xcol), dim=1)
|
292 |
+
|
293 |
+
# print the generated text
|
294 |
+
for i in range(num_return_sequences):
|
295 |
+
tokens = x[i, :max_length].tolist()
|
296 |
+
decoded = enc.decode(tokens)
|
297 |
+
print(">", decoded)
|
CodeFiles/train_get2-9-speedup4.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# torch.compile
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
22 |
+
# regularization
|
23 |
+
self.n_head = config.n_head
|
24 |
+
self.n_embd = config.n_embd
|
25 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
29 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
30 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
31 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
32 |
+
qkv = self.c_attn(x)
|
33 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
34 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
|
38 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
39 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
40 |
+
att = F.softmax(att, dim=-1)
|
41 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
42 |
+
|
43 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
44 |
+
# output projection
|
45 |
+
y = self.c_proj(y)
|
46 |
+
return y
|
47 |
+
|
48 |
+
|
49 |
+
class MLP(nn.Module):
|
50 |
+
|
51 |
+
def __init__(self, config):
|
52 |
+
super().__init__()
|
53 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
54 |
+
self.gelu = nn.GELU(approximate='tanh')
|
55 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
56 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
x = self.c_fc(x)
|
60 |
+
x = self.gelu(x)
|
61 |
+
x = self.c_proj(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
class Block(nn.Module):
|
65 |
+
|
66 |
+
def __init__(self, config):
|
67 |
+
super().__init__()
|
68 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
69 |
+
self.attn = CausalSelfAttention(config)
|
70 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
71 |
+
self.mlp = MLP(config)
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
x = x + self.attn(self.ln_1(x))
|
75 |
+
x = x + self.mlp(self.ln_2(x))
|
76 |
+
return x
|
77 |
+
|
78 |
+
|
79 |
+
@dataclass
|
80 |
+
class GPTConfig:
|
81 |
+
block_size: int = 1024 # max sequence length
|
82 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
83 |
+
n_layer: int = 12 # number of layers
|
84 |
+
n_head: int = 12 # number of heads
|
85 |
+
n_embd: int = 768 # embedding dimension
|
86 |
+
|
87 |
+
|
88 |
+
class GPT(nn.Module):
|
89 |
+
|
90 |
+
def __init__(self, config):
|
91 |
+
super().__init__()
|
92 |
+
self.config = config
|
93 |
+
|
94 |
+
self.transformer = nn.ModuleDict(dict(
|
95 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
96 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
97 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
98 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
99 |
+
))
|
100 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
101 |
+
|
102 |
+
# weight sharing
|
103 |
+
self.transformer.wte.weight = self.lm_head.weight
|
104 |
+
|
105 |
+
# weight initialization
|
106 |
+
self.apply(self._init_weights)
|
107 |
+
|
108 |
+
def _init_weights(self, module):
|
109 |
+
if isinstance(module, nn.Linear):
|
110 |
+
std = 0.02
|
111 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
112 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
113 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
114 |
+
if module.bias is not None:
|
115 |
+
torch.nn.init.zeros_(module.bias)
|
116 |
+
elif isinstance(module, nn.Embedding):
|
117 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, idx, targets=None):
|
122 |
+
# idx is of shape (B, T)
|
123 |
+
B, T = idx.size()
|
124 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
125 |
+
# forward the token and posisition embeddings
|
126 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
127 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
128 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
129 |
+
x = tok_emb + pos_emb
|
130 |
+
# forward the blocks of the transformer
|
131 |
+
for block in self.transformer.h:
|
132 |
+
x = block(x)
|
133 |
+
# forward the final layernorm and the classifier
|
134 |
+
x = self.transformer.ln_f(x)
|
135 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
136 |
+
loss = None
|
137 |
+
if targets is not None:
|
138 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
139 |
+
return logits, loss
|
140 |
+
|
141 |
+
@classmethod
|
142 |
+
def from_pretrained(cls, model_type):
|
143 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
144 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
145 |
+
from transformers import GPT2LMHeadModel
|
146 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
147 |
+
|
148 |
+
# n_layer, n_head and n_embd are determined from model_type
|
149 |
+
config_args = {
|
150 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
151 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
152 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
153 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
154 |
+
}[model_type]
|
155 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
156 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
157 |
+
# create a from-scratch initialized minGPT model
|
158 |
+
config = GPTConfig(**config_args)
|
159 |
+
model = GPT(config)
|
160 |
+
sd = model.state_dict()
|
161 |
+
sd_keys = sd.keys()
|
162 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
163 |
+
|
164 |
+
# init a huggingface/transformers model
|
165 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
166 |
+
sd_hf = model_hf.state_dict()
|
167 |
+
|
168 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
169 |
+
sd_keys_hf = sd_hf.keys()
|
170 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
171 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
172 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
173 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
174 |
+
# this means that we have to transpose these weights when we import them
|
175 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
176 |
+
for k in sd_keys_hf:
|
177 |
+
if any(k.endswith(w) for w in transposed):
|
178 |
+
# special treatment for the Conv1D weights we need to transpose
|
179 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
180 |
+
with torch.no_grad():
|
181 |
+
sd[k].copy_(sd_hf[k].t())
|
182 |
+
else:
|
183 |
+
# vanilla copy over the other parameters
|
184 |
+
assert sd_hf[k].shape == sd[k].shape
|
185 |
+
with torch.no_grad():
|
186 |
+
sd[k].copy_(sd_hf[k])
|
187 |
+
|
188 |
+
return model
|
189 |
+
|
190 |
+
# model = GPT.from_pretrained('gpt2')
|
191 |
+
|
192 |
+
device = 'cpu'
|
193 |
+
if torch.cuda.is_available():
|
194 |
+
device = 'cuda'
|
195 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
196 |
+
device = "mps"
|
197 |
+
print(f"using device: {device}")
|
198 |
+
|
199 |
+
# SEED
|
200 |
+
torch.manual_seed(1337)
|
201 |
+
if torch.cuda.is_available():
|
202 |
+
torch.cuda.manual_seed(1337)
|
203 |
+
|
204 |
+
# STOP
|
205 |
+
num_return_sequences = 5
|
206 |
+
max_length = 30
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
import tiktoken
|
211 |
+
|
212 |
+
class DataLoaderLite:
|
213 |
+
def __init__(self, B, T):
|
214 |
+
self.B = B
|
215 |
+
self.T = T
|
216 |
+
|
217 |
+
# at init load tokens from disk and store them in memory
|
218 |
+
with open('input.txt', 'r') as f:
|
219 |
+
text = f.read()
|
220 |
+
enc = tiktoken.get_encoding('gpt2')
|
221 |
+
tokens = enc.encode(text)
|
222 |
+
self.tokens = torch.tensor(tokens)
|
223 |
+
print(f'loaded {len(self.tokens)} tokens')
|
224 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
225 |
+
|
226 |
+
# state
|
227 |
+
self.current_position = 0
|
228 |
+
|
229 |
+
def next_batch(self):
|
230 |
+
B, T = self.B, self.T
|
231 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
232 |
+
x = (buf[:-1]).view(B, T) # inputs
|
233 |
+
y = (buf[1:]).view(B, T) # targets
|
234 |
+
# advance the position in the tensor
|
235 |
+
self.current_position += B*T
|
236 |
+
# if loading the next batch would be out of bounds, reset
|
237 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
238 |
+
self.current_position = 0
|
239 |
+
return x, y
|
240 |
+
|
241 |
+
# CHANGES IN CURRENT CODE
|
242 |
+
torch.set_float32_matmul_precision('high')
|
243 |
+
|
244 |
+
model = GPT(GPTConfig())
|
245 |
+
model.to(device)
|
246 |
+
model = torch.compile(model)
|
247 |
+
|
248 |
+
train_loader = DataLoaderLite(B = 8, T = 1024)
|
249 |
+
|
250 |
+
# NEW CODE
|
251 |
+
import time
|
252 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
253 |
+
for i in range(50):
|
254 |
+
t0 = time.time()
|
255 |
+
x, y = train_loader.next_batch()
|
256 |
+
x, y = x.to(device), y.to(device)
|
257 |
+
optimizer.zero_grad()
|
258 |
+
# NEW CODE ADDED HERE
|
259 |
+
with torch.autocast(device_type=device, dtype=torch.bfloat16):
|
260 |
+
logits, loss = model(x, y)
|
261 |
+
loss.backward()
|
262 |
+
optimizer.step()
|
263 |
+
torch.cuda.synchronize()
|
264 |
+
t1 = time.time()
|
265 |
+
dt = (t1 - t0) * 1000
|
266 |
+
tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0)
|
267 |
+
print(f'step{i} | loss: {loss.item()} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec: .2f}')
|
268 |
+
|
269 |
+
|
270 |
+
print(loss)
|
271 |
+
import sys; sys.exit(0)
|
272 |
+
|
273 |
+
torch.manual_seed(42)
|
274 |
+
torch.cuda.manual_seed(42)
|
275 |
+
while x.size(1) < max_length:
|
276 |
+
# forward the model to get the logits
|
277 |
+
with torch.no_grad():
|
278 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
279 |
+
# take the logits at the last position
|
280 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
281 |
+
# get the probabilities
|
282 |
+
probs = F.softmax(logits, dim=-1)
|
283 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
284 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
285 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
286 |
+
# select a token from the top-k probabilities
|
287 |
+
# note: multinomial does not demand the input to sum to 1
|
288 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
289 |
+
# gather the corresponding indices
|
290 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
291 |
+
# append to the sequence
|
292 |
+
x = torch.cat((x, xcol), dim=1)
|
293 |
+
|
294 |
+
# print the generated text
|
295 |
+
for i in range(num_return_sequences):
|
296 |
+
tokens = x[i, :max_length].tolist()
|
297 |
+
decoded = enc.decode(tokens)
|
298 |
+
print(">", decoded)
|
CodeFiles/train_get2-9-speedup5.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Flash Attention
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
22 |
+
# regularization
|
23 |
+
self.n_head = config.n_head
|
24 |
+
self.n_embd = config.n_embd
|
25 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
29 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
30 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
31 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
32 |
+
qkv = self.c_attn(x)
|
33 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
34 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
|
38 |
+
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
39 |
+
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
40 |
+
# att = F.softmax(att, dim=-1)
|
41 |
+
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
42 |
+
|
43 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal = True) # Flash attention
|
44 |
+
|
45 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
46 |
+
# output projection
|
47 |
+
y = self.c_proj(y)
|
48 |
+
return y
|
49 |
+
|
50 |
+
|
51 |
+
class MLP(nn.Module):
|
52 |
+
|
53 |
+
def __init__(self, config):
|
54 |
+
super().__init__()
|
55 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
56 |
+
self.gelu = nn.GELU(approximate='tanh')
|
57 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
58 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
x = self.c_fc(x)
|
62 |
+
x = self.gelu(x)
|
63 |
+
x = self.c_proj(x)
|
64 |
+
return x
|
65 |
+
|
66 |
+
class Block(nn.Module):
|
67 |
+
|
68 |
+
def __init__(self, config):
|
69 |
+
super().__init__()
|
70 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
71 |
+
self.attn = CausalSelfAttention(config)
|
72 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
73 |
+
self.mlp = MLP(config)
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
x = x + self.attn(self.ln_1(x))
|
77 |
+
x = x + self.mlp(self.ln_2(x))
|
78 |
+
return x
|
79 |
+
|
80 |
+
|
81 |
+
@dataclass
|
82 |
+
class GPTConfig:
|
83 |
+
block_size: int = 1024 # max sequence length
|
84 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
85 |
+
n_layer: int = 12 # number of layers
|
86 |
+
n_head: int = 12 # number of heads
|
87 |
+
n_embd: int = 768 # embedding dimension
|
88 |
+
|
89 |
+
|
90 |
+
class GPT(nn.Module):
|
91 |
+
|
92 |
+
def __init__(self, config):
|
93 |
+
super().__init__()
|
94 |
+
self.config = config
|
95 |
+
|
96 |
+
self.transformer = nn.ModuleDict(dict(
|
97 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
98 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
99 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
100 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
101 |
+
))
|
102 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
103 |
+
|
104 |
+
# weight sharing
|
105 |
+
self.transformer.wte.weight = self.lm_head.weight
|
106 |
+
|
107 |
+
# weight initialization
|
108 |
+
self.apply(self._init_weights)
|
109 |
+
|
110 |
+
def _init_weights(self, module):
|
111 |
+
if isinstance(module, nn.Linear):
|
112 |
+
std = 0.02
|
113 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
114 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
115 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
116 |
+
if module.bias is not None:
|
117 |
+
torch.nn.init.zeros_(module.bias)
|
118 |
+
elif isinstance(module, nn.Embedding):
|
119 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
def forward(self, idx, targets=None):
|
124 |
+
# idx is of shape (B, T)
|
125 |
+
B, T = idx.size()
|
126 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
127 |
+
# forward the token and posisition embeddings
|
128 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
129 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
130 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
131 |
+
x = tok_emb + pos_emb
|
132 |
+
# forward the blocks of the transformer
|
133 |
+
for block in self.transformer.h:
|
134 |
+
x = block(x)
|
135 |
+
# forward the final layernorm and the classifier
|
136 |
+
x = self.transformer.ln_f(x)
|
137 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
138 |
+
loss = None
|
139 |
+
if targets is not None:
|
140 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
141 |
+
return logits, loss
|
142 |
+
|
143 |
+
@classmethod
|
144 |
+
def from_pretrained(cls, model_type):
|
145 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
146 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
147 |
+
from transformers import GPT2LMHeadModel
|
148 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
149 |
+
|
150 |
+
# n_layer, n_head and n_embd are determined from model_type
|
151 |
+
config_args = {
|
152 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
153 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
154 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
155 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
156 |
+
}[model_type]
|
157 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
158 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
159 |
+
# create a from-scratch initialized minGPT model
|
160 |
+
config = GPTConfig(**config_args)
|
161 |
+
model = GPT(config)
|
162 |
+
sd = model.state_dict()
|
163 |
+
sd_keys = sd.keys()
|
164 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
165 |
+
|
166 |
+
# init a huggingface/transformers model
|
167 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
168 |
+
sd_hf = model_hf.state_dict()
|
169 |
+
|
170 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
171 |
+
sd_keys_hf = sd_hf.keys()
|
172 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
173 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
174 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
175 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
176 |
+
# this means that we have to transpose these weights when we import them
|
177 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
178 |
+
for k in sd_keys_hf:
|
179 |
+
if any(k.endswith(w) for w in transposed):
|
180 |
+
# special treatment for the Conv1D weights we need to transpose
|
181 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
182 |
+
with torch.no_grad():
|
183 |
+
sd[k].copy_(sd_hf[k].t())
|
184 |
+
else:
|
185 |
+
# vanilla copy over the other parameters
|
186 |
+
assert sd_hf[k].shape == sd[k].shape
|
187 |
+
with torch.no_grad():
|
188 |
+
sd[k].copy_(sd_hf[k])
|
189 |
+
|
190 |
+
return model
|
191 |
+
|
192 |
+
# model = GPT.from_pretrained('gpt2')
|
193 |
+
|
194 |
+
device = 'cpu'
|
195 |
+
if torch.cuda.is_available():
|
196 |
+
device = 'cuda'
|
197 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
198 |
+
device = "mps"
|
199 |
+
print(f"using device: {device}")
|
200 |
+
|
201 |
+
# SEED
|
202 |
+
torch.manual_seed(1337)
|
203 |
+
if torch.cuda.is_available():
|
204 |
+
torch.cuda.manual_seed(1337)
|
205 |
+
|
206 |
+
# STOP
|
207 |
+
num_return_sequences = 5
|
208 |
+
max_length = 30
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
import tiktoken
|
213 |
+
|
214 |
+
class DataLoaderLite:
|
215 |
+
def __init__(self, B, T):
|
216 |
+
self.B = B
|
217 |
+
self.T = T
|
218 |
+
|
219 |
+
# at init load tokens from disk and store them in memory
|
220 |
+
with open('input.txt', 'r') as f:
|
221 |
+
text = f.read()
|
222 |
+
enc = tiktoken.get_encoding('gpt2')
|
223 |
+
tokens = enc.encode(text)
|
224 |
+
self.tokens = torch.tensor(tokens)
|
225 |
+
print(f'loaded {len(self.tokens)} tokens')
|
226 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
227 |
+
|
228 |
+
# state
|
229 |
+
self.current_position = 0
|
230 |
+
|
231 |
+
def next_batch(self):
|
232 |
+
B, T = self.B, self.T
|
233 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
234 |
+
x = (buf[:-1]).view(B, T) # inputs
|
235 |
+
y = (buf[1:]).view(B, T) # targets
|
236 |
+
# advance the position in the tensor
|
237 |
+
self.current_position += B*T
|
238 |
+
# if loading the next batch would be out of bounds, reset
|
239 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
240 |
+
self.current_position = 0
|
241 |
+
return x, y
|
242 |
+
|
243 |
+
# CHANGES IN CURRENT CODE
|
244 |
+
torch.set_float32_matmul_precision('high')
|
245 |
+
|
246 |
+
model = GPT(GPTConfig())
|
247 |
+
model.to(device)
|
248 |
+
# model = torch.compile(model)
|
249 |
+
|
250 |
+
train_loader = DataLoaderLite(B = 16, T = 1024)
|
251 |
+
|
252 |
+
# NEW CODE
|
253 |
+
import time
|
254 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
255 |
+
for i in range(50):
|
256 |
+
t0 = time.time()
|
257 |
+
x, y = train_loader.next_batch()
|
258 |
+
x, y = x.to(device), y.to(device)
|
259 |
+
optimizer.zero_grad()
|
260 |
+
# NEW CODE ADDED HERE
|
261 |
+
with torch.autocast(device_type=device, dtype=torch.bfloat16):
|
262 |
+
logits, loss = model(x, y)
|
263 |
+
loss.backward()
|
264 |
+
optimizer.step()
|
265 |
+
torch.cuda.synchronize()
|
266 |
+
t1 = time.time()
|
267 |
+
dt = (t1 - t0) * 1000
|
268 |
+
tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0)
|
269 |
+
print(f'step{i} | loss: {loss.item()} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec: .2f}')
|
270 |
+
|
271 |
+
|
272 |
+
print(loss)
|
273 |
+
import sys; sys.exit(0)
|
274 |
+
|
275 |
+
torch.manual_seed(42)
|
276 |
+
torch.cuda.manual_seed(42)
|
277 |
+
while x.size(1) < max_length:
|
278 |
+
# forward the model to get the logits
|
279 |
+
with torch.no_grad():
|
280 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
281 |
+
# take the logits at the last position
|
282 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
283 |
+
# get the probabilities
|
284 |
+
probs = F.softmax(logits, dim=-1)
|
285 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
286 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
287 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
288 |
+
# select a token from the top-k probabilities
|
289 |
+
# note: multinomial does not demand the input to sum to 1
|
290 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
291 |
+
# gather the corresponding indices
|
292 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
293 |
+
# append to the sequence
|
294 |
+
x = torch.cat((x, xcol), dim=1)
|
295 |
+
|
296 |
+
# print the generated text
|
297 |
+
for i in range(num_return_sequences):
|
298 |
+
tokens = x[i, :max_length].tolist()
|
299 |
+
decoded = enc.decode(tokens)
|
300 |
+
print(">", decoded)
|
CodeFiles/train_get2-9-speedup6.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# POwer of 2
|
2 |
+
import os
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
import inspect
|
6 |
+
from dataclasses import dataclass
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
|
11 |
+
|
12 |
+
class CausalSelfAttention(nn.Module):
|
13 |
+
|
14 |
+
def __init__(self, config):
|
15 |
+
super().__init__()
|
16 |
+
assert config.n_embd % config.n_head == 0
|
17 |
+
# key, query, value projections for all heads, but in a batch
|
18 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
19 |
+
# output projection
|
20 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
21 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
22 |
+
# regularization
|
23 |
+
self.n_head = config.n_head
|
24 |
+
self.n_embd = config.n_embd
|
25 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
29 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
30 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
31 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
32 |
+
qkv = self.c_attn(x)
|
33 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
34 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
35 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
|
38 |
+
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
39 |
+
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
40 |
+
# att = F.softmax(att, dim=-1)
|
41 |
+
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
42 |
+
|
43 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal = True) # Flash attention
|
44 |
+
|
45 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
46 |
+
# output projection
|
47 |
+
y = self.c_proj(y)
|
48 |
+
return y
|
49 |
+
|
50 |
+
|
51 |
+
class MLP(nn.Module):
|
52 |
+
|
53 |
+
def __init__(self, config):
|
54 |
+
super().__init__()
|
55 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
56 |
+
self.gelu = nn.GELU(approximate='tanh')
|
57 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
58 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
x = self.c_fc(x)
|
62 |
+
x = self.gelu(x)
|
63 |
+
x = self.c_proj(x)
|
64 |
+
return x
|
65 |
+
|
66 |
+
class Block(nn.Module):
|
67 |
+
|
68 |
+
def __init__(self, config):
|
69 |
+
super().__init__()
|
70 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
71 |
+
self.attn = CausalSelfAttention(config)
|
72 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
73 |
+
self.mlp = MLP(config)
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
x = x + self.attn(self.ln_1(x))
|
77 |
+
x = x + self.mlp(self.ln_2(x))
|
78 |
+
return x
|
79 |
+
|
80 |
+
|
81 |
+
@dataclass
|
82 |
+
class GPTConfig:
|
83 |
+
block_size: int = 1024 # max sequence length
|
84 |
+
vocab_size: int = 50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
85 |
+
n_layer: int = 12 # number of layers
|
86 |
+
n_head: int = 12 # number of heads
|
87 |
+
n_embd: int = 768 # embedding dimension
|
88 |
+
|
89 |
+
|
90 |
+
class GPT(nn.Module):
|
91 |
+
|
92 |
+
def __init__(self, config):
|
93 |
+
super().__init__()
|
94 |
+
self.config = config
|
95 |
+
|
96 |
+
self.transformer = nn.ModuleDict(dict(
|
97 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
98 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
99 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
100 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
101 |
+
))
|
102 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
103 |
+
|
104 |
+
# weight sharing
|
105 |
+
self.transformer.wte.weight = self.lm_head.weight
|
106 |
+
|
107 |
+
# weight initialization
|
108 |
+
self.apply(self._init_weights)
|
109 |
+
|
110 |
+
def _init_weights(self, module):
|
111 |
+
if isinstance(module, nn.Linear):
|
112 |
+
std = 0.02
|
113 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
114 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
115 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
116 |
+
if module.bias is not None:
|
117 |
+
torch.nn.init.zeros_(module.bias)
|
118 |
+
elif isinstance(module, nn.Embedding):
|
119 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
def forward(self, idx, targets=None):
|
124 |
+
# idx is of shape (B, T)
|
125 |
+
B, T = idx.size()
|
126 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
127 |
+
# forward the token and posisition embeddings
|
128 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
129 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
130 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
131 |
+
x = tok_emb + pos_emb
|
132 |
+
# forward the blocks of the transformer
|
133 |
+
for block in self.transformer.h:
|
134 |
+
x = block(x)
|
135 |
+
# forward the final layernorm and the classifier
|
136 |
+
x = self.transformer.ln_f(x)
|
137 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
138 |
+
loss = None
|
139 |
+
if targets is not None:
|
140 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
141 |
+
return logits, loss
|
142 |
+
|
143 |
+
@classmethod
|
144 |
+
def from_pretrained(cls, model_type):
|
145 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
146 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
147 |
+
from transformers import GPT2LMHeadModel
|
148 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
149 |
+
|
150 |
+
# n_layer, n_head and n_embd are determined from model_type
|
151 |
+
config_args = {
|
152 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
153 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
154 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
155 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
156 |
+
}[model_type]
|
157 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
158 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
159 |
+
# create a from-scratch initialized minGPT model
|
160 |
+
config = GPTConfig(**config_args)
|
161 |
+
model = GPT(config)
|
162 |
+
sd = model.state_dict()
|
163 |
+
sd_keys = sd.keys()
|
164 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
165 |
+
|
166 |
+
# init a huggingface/transformers model
|
167 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
168 |
+
sd_hf = model_hf.state_dict()
|
169 |
+
|
170 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
171 |
+
sd_keys_hf = sd_hf.keys()
|
172 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
173 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
174 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
175 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
176 |
+
# this means that we have to transpose these weights when we import them
|
177 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
178 |
+
for k in sd_keys_hf:
|
179 |
+
if any(k.endswith(w) for w in transposed):
|
180 |
+
# special treatment for the Conv1D weights we need to transpose
|
181 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
182 |
+
with torch.no_grad():
|
183 |
+
sd[k].copy_(sd_hf[k].t())
|
184 |
+
else:
|
185 |
+
# vanilla copy over the other parameters
|
186 |
+
assert sd_hf[k].shape == sd[k].shape
|
187 |
+
with torch.no_grad():
|
188 |
+
sd[k].copy_(sd_hf[k])
|
189 |
+
|
190 |
+
return model
|
191 |
+
|
192 |
+
# model = GPT.from_pretrained('gpt2')
|
193 |
+
|
194 |
+
device = 'cpu'
|
195 |
+
if torch.cuda.is_available():
|
196 |
+
device = 'cuda'
|
197 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
198 |
+
device = "mps"
|
199 |
+
print(f"using device: {device}")
|
200 |
+
|
201 |
+
# SEED
|
202 |
+
torch.manual_seed(1337)
|
203 |
+
if torch.cuda.is_available():
|
204 |
+
torch.cuda.manual_seed(1337)
|
205 |
+
|
206 |
+
# STOP
|
207 |
+
num_return_sequences = 5
|
208 |
+
max_length = 30
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
import tiktoken
|
213 |
+
|
214 |
+
class DataLoaderLite:
|
215 |
+
def __init__(self, B, T):
|
216 |
+
self.B = B
|
217 |
+
self.T = T
|
218 |
+
|
219 |
+
# at init load tokens from disk and store them in memory
|
220 |
+
with open('input.txt', 'r') as f:
|
221 |
+
text = f.read()
|
222 |
+
enc = tiktoken.get_encoding('gpt2')
|
223 |
+
tokens = enc.encode(text)
|
224 |
+
self.tokens = torch.tensor(tokens)
|
225 |
+
print(f'loaded {len(self.tokens)} tokens')
|
226 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
227 |
+
|
228 |
+
# state
|
229 |
+
self.current_position = 0
|
230 |
+
|
231 |
+
def next_batch(self):
|
232 |
+
B, T = self.B, self.T
|
233 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
234 |
+
x = (buf[:-1]).view(B, T) # inputs
|
235 |
+
y = (buf[1:]).view(B, T) # targets
|
236 |
+
# advance the position in the tensor
|
237 |
+
self.current_position += B*T
|
238 |
+
# if loading the next batch would be out of bounds, reset
|
239 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
240 |
+
self.current_position = 0
|
241 |
+
return x, y
|
242 |
+
|
243 |
+
# CHANGES IN CURRENT CODE
|
244 |
+
torch.set_float32_matmul_precision('high')
|
245 |
+
|
246 |
+
model = GPT(GPTConfig())
|
247 |
+
model.to(device)
|
248 |
+
# model = torch.compile(model)
|
249 |
+
|
250 |
+
train_loader = DataLoaderLite(B = 16, T = 1024)
|
251 |
+
|
252 |
+
# NEW CODE
|
253 |
+
import time
|
254 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
255 |
+
for i in range(50):
|
256 |
+
t0 = time.time()
|
257 |
+
x, y = train_loader.next_batch()
|
258 |
+
x, y = x.to(device), y.to(device)
|
259 |
+
optimizer.zero_grad()
|
260 |
+
# NEW CODE ADDED HERE
|
261 |
+
with torch.autocast(device_type=device, dtype=torch.bfloat16):
|
262 |
+
logits, loss = model(x, y)
|
263 |
+
loss.backward()
|
264 |
+
optimizer.step()
|
265 |
+
torch.cuda.synchronize()
|
266 |
+
t1 = time.time()
|
267 |
+
dt = (t1 - t0) * 1000
|
268 |
+
tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0)
|
269 |
+
print(f'step{i} | loss: {loss.item()} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec: .2f}')
|
270 |
+
|
271 |
+
|
272 |
+
print(loss)
|
273 |
+
import sys; sys.exit(0)
|
274 |
+
|
275 |
+
torch.manual_seed(42)
|
276 |
+
torch.cuda.manual_seed(42)
|
277 |
+
while x.size(1) < max_length:
|
278 |
+
# forward the model to get the logits
|
279 |
+
with torch.no_grad():
|
280 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
281 |
+
# take the logits at the last position
|
282 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
283 |
+
# get the probabilities
|
284 |
+
probs = F.softmax(logits, dim=-1)
|
285 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
286 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
287 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
288 |
+
# select a token from the top-k probabilities
|
289 |
+
# note: multinomial does not demand the input to sum to 1
|
290 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
291 |
+
# gather the corresponding indices
|
292 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
293 |
+
# append to the sequence
|
294 |
+
x = torch.cat((x, xcol), dim=1)
|
295 |
+
|
296 |
+
# print the generated text
|
297 |
+
for i in range(num_return_sequences):
|
298 |
+
tokens = x[i, :max_length].tolist()
|
299 |
+
decoded = enc.decode(tokens)
|
300 |
+
print(">", decoded)
|
CodeFiles/train_get2-9-speedup7.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GPT-3 Paper
|
2 |
+
# model training, hyper-parameters
|
3 |
+
# Adam W
|
4 |
+
# gradient clipping.
|
5 |
+
import os
|
6 |
+
import math
|
7 |
+
import time
|
8 |
+
import inspect
|
9 |
+
from dataclasses import dataclass
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
from torch.nn import functional as F
|
13 |
+
|
14 |
+
|
15 |
+
class CausalSelfAttention(nn.Module):
|
16 |
+
|
17 |
+
def __init__(self, config):
|
18 |
+
super().__init__()
|
19 |
+
assert config.n_embd % config.n_head == 0
|
20 |
+
# key, query, value projections for all heads, but in a batch
|
21 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
22 |
+
# output projection
|
23 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
24 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
25 |
+
# regularization
|
26 |
+
self.n_head = config.n_head
|
27 |
+
self.n_embd = config.n_embd
|
28 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
32 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
33 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
34 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
35 |
+
qkv = self.c_attn(x)
|
36 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
37 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
38 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
39 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
40 |
+
|
41 |
+
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
42 |
+
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
43 |
+
# att = F.softmax(att, dim=-1)
|
44 |
+
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
45 |
+
|
46 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal = True) # Flash attention
|
47 |
+
|
48 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
49 |
+
# output projection
|
50 |
+
y = self.c_proj(y)
|
51 |
+
return y
|
52 |
+
|
53 |
+
|
54 |
+
class MLP(nn.Module):
|
55 |
+
|
56 |
+
def __init__(self, config):
|
57 |
+
super().__init__()
|
58 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
59 |
+
self.gelu = nn.GELU(approximate='tanh')
|
60 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
61 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
x = self.c_fc(x)
|
65 |
+
x = self.gelu(x)
|
66 |
+
x = self.c_proj(x)
|
67 |
+
return x
|
68 |
+
|
69 |
+
class Block(nn.Module):
|
70 |
+
|
71 |
+
def __init__(self, config):
|
72 |
+
super().__init__()
|
73 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
74 |
+
self.attn = CausalSelfAttention(config)
|
75 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
76 |
+
self.mlp = MLP(config)
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
x = x + self.attn(self.ln_1(x))
|
80 |
+
x = x + self.mlp(self.ln_2(x))
|
81 |
+
return x
|
82 |
+
|
83 |
+
|
84 |
+
@dataclass
|
85 |
+
class GPTConfig:
|
86 |
+
block_size: int = 1024 # max sequence length
|
87 |
+
vocab_size: int = 50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
88 |
+
n_layer: int = 12 # number of layers
|
89 |
+
n_head: int = 12 # number of heads
|
90 |
+
n_embd: int = 768 # embedding dimension
|
91 |
+
|
92 |
+
|
93 |
+
class GPT(nn.Module):
|
94 |
+
|
95 |
+
def __init__(self, config):
|
96 |
+
super().__init__()
|
97 |
+
self.config = config
|
98 |
+
|
99 |
+
self.transformer = nn.ModuleDict(dict(
|
100 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
101 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
102 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
103 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
104 |
+
))
|
105 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
106 |
+
|
107 |
+
# weight sharing
|
108 |
+
self.transformer.wte.weight = self.lm_head.weight
|
109 |
+
|
110 |
+
# weight initialization
|
111 |
+
self.apply(self._init_weights)
|
112 |
+
|
113 |
+
def _init_weights(self, module):
|
114 |
+
if isinstance(module, nn.Linear):
|
115 |
+
std = 0.02
|
116 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
117 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
118 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
119 |
+
if module.bias is not None:
|
120 |
+
torch.nn.init.zeros_(module.bias)
|
121 |
+
elif isinstance(module, nn.Embedding):
|
122 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
def forward(self, idx, targets=None):
|
127 |
+
# idx is of shape (B, T)
|
128 |
+
B, T = idx.size()
|
129 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
130 |
+
# forward the token and posisition embeddings
|
131 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
132 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
133 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
134 |
+
x = tok_emb + pos_emb
|
135 |
+
# forward the blocks of the transformer
|
136 |
+
for block in self.transformer.h:
|
137 |
+
x = block(x)
|
138 |
+
# forward the final layernorm and the classifier
|
139 |
+
x = self.transformer.ln_f(x)
|
140 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
141 |
+
loss = None
|
142 |
+
if targets is not None:
|
143 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
144 |
+
return logits, loss
|
145 |
+
|
146 |
+
@classmethod
|
147 |
+
def from_pretrained(cls, model_type):
|
148 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
149 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
150 |
+
from transformers import GPT2LMHeadModel
|
151 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
152 |
+
|
153 |
+
# n_layer, n_head and n_embd are determined from model_type
|
154 |
+
config_args = {
|
155 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
156 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
157 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
158 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
159 |
+
}[model_type]
|
160 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
161 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
162 |
+
# create a from-scratch initialized minGPT model
|
163 |
+
config = GPTConfig(**config_args)
|
164 |
+
model = GPT(config)
|
165 |
+
sd = model.state_dict()
|
166 |
+
sd_keys = sd.keys()
|
167 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
168 |
+
|
169 |
+
# init a huggingface/transformers model
|
170 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
171 |
+
sd_hf = model_hf.state_dict()
|
172 |
+
|
173 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
174 |
+
sd_keys_hf = sd_hf.keys()
|
175 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
176 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
177 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
178 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
179 |
+
# this means that we have to transpose these weights when we import them
|
180 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
181 |
+
for k in sd_keys_hf:
|
182 |
+
if any(k.endswith(w) for w in transposed):
|
183 |
+
# special treatment for the Conv1D weights we need to transpose
|
184 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
185 |
+
with torch.no_grad():
|
186 |
+
sd[k].copy_(sd_hf[k].t())
|
187 |
+
else:
|
188 |
+
# vanilla copy over the other parameters
|
189 |
+
assert sd_hf[k].shape == sd[k].shape
|
190 |
+
with torch.no_grad():
|
191 |
+
sd[k].copy_(sd_hf[k])
|
192 |
+
|
193 |
+
return model
|
194 |
+
|
195 |
+
# model = GPT.from_pretrained('gpt2')
|
196 |
+
|
197 |
+
device = 'cpu'
|
198 |
+
if torch.cuda.is_available():
|
199 |
+
device = 'cuda'
|
200 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
201 |
+
device = "mps"
|
202 |
+
print(f"using device: {device}")
|
203 |
+
|
204 |
+
# SEED
|
205 |
+
torch.manual_seed(1337)
|
206 |
+
if torch.cuda.is_available():
|
207 |
+
torch.cuda.manual_seed(1337)
|
208 |
+
|
209 |
+
# STOP
|
210 |
+
num_return_sequences = 5
|
211 |
+
max_length = 30
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
import tiktoken
|
216 |
+
|
217 |
+
class DataLoaderLite:
|
218 |
+
def __init__(self, B, T):
|
219 |
+
self.B = B
|
220 |
+
self.T = T
|
221 |
+
|
222 |
+
# at init load tokens from disk and store them in memory
|
223 |
+
with open('input.txt', 'r') as f:
|
224 |
+
text = f.read()
|
225 |
+
enc = tiktoken.get_encoding('gpt2')
|
226 |
+
tokens = enc.encode(text)
|
227 |
+
self.tokens = torch.tensor(tokens)
|
228 |
+
print(f'loaded {len(self.tokens)} tokens')
|
229 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
230 |
+
|
231 |
+
# state
|
232 |
+
self.current_position = 0
|
233 |
+
|
234 |
+
def next_batch(self):
|
235 |
+
B, T = self.B, self.T
|
236 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
237 |
+
x = (buf[:-1]).view(B, T) # inputs
|
238 |
+
y = (buf[1:]).view(B, T) # targets
|
239 |
+
# advance the position in the tensor
|
240 |
+
self.current_position += B*T
|
241 |
+
# if loading the next batch would be out of bounds, reset
|
242 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
243 |
+
self.current_position = 0
|
244 |
+
return x, y
|
245 |
+
|
246 |
+
# CHANGES IN CURRENT CODE
|
247 |
+
torch.set_float32_matmul_precision('high')
|
248 |
+
|
249 |
+
model = GPT(GPTConfig())
|
250 |
+
model.to(device)
|
251 |
+
# model = torch.compile(model)
|
252 |
+
|
253 |
+
train_loader = DataLoaderLite(B = 16, T = 1024)
|
254 |
+
|
255 |
+
# NEW CODE
|
256 |
+
import time
|
257 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4, betas=(0.9, 0.95), eps=1e-8)
|
258 |
+
for i in range(50):
|
259 |
+
t0 = time.time()
|
260 |
+
x, y = train_loader.next_batch()
|
261 |
+
x, y = x.to(device), y.to(device)
|
262 |
+
optimizer.zero_grad()
|
263 |
+
# NEW CODE ADDED HERE
|
264 |
+
with torch.autocast(device_type=device, dtype=torch.bfloat16):
|
265 |
+
logits, loss = model(x, y)
|
266 |
+
loss.backward()
|
267 |
+
norm = torch.nn.utils.clip_grad_norm(model.parameters(), 1.0)
|
268 |
+
optimizer.step()
|
269 |
+
torch.cuda.synchronize()
|
270 |
+
t1 = time.time()
|
271 |
+
dt = (t1 - t0) * 1000
|
272 |
+
tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0)
|
273 |
+
print(f'step{i} | loss: {loss.item()} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec: .2f} | norm: {norm:.2f}')
|
274 |
+
|
275 |
+
|
276 |
+
print(loss)
|
277 |
+
import sys; sys.exit(0)
|
278 |
+
|
279 |
+
torch.manual_seed(42)
|
280 |
+
torch.cuda.manual_seed(42)
|
281 |
+
while x.size(1) < max_length:
|
282 |
+
# forward the model to get the logits
|
283 |
+
with torch.no_grad():
|
284 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
285 |
+
# take the logits at the last position
|
286 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
287 |
+
# get the probabilities
|
288 |
+
probs = F.softmax(logits, dim=-1)
|
289 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
290 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
291 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
292 |
+
# select a token from the top-k probabilities
|
293 |
+
# note: multinomial does not demand the input to sum to 1
|
294 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
295 |
+
# gather the corresponding indices
|
296 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
297 |
+
# append to the sequence
|
298 |
+
x = torch.cat((x, xcol), dim=1)
|
299 |
+
|
300 |
+
# print the generated text
|
301 |
+
for i in range(num_return_sequences):
|
302 |
+
tokens = x[i, :max_length].tolist()
|
303 |
+
decoded = enc.decode(tokens)
|
304 |
+
print(">", decoded)
|
CodeFiles/train_get2-9-speedup8.py
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GPT-3 Paper
|
2 |
+
# add cosing delay
|
3 |
+
import os
|
4 |
+
import math
|
5 |
+
import time
|
6 |
+
import inspect
|
7 |
+
from dataclasses import dataclass
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
|
12 |
+
|
13 |
+
class CausalSelfAttention(nn.Module):
|
14 |
+
|
15 |
+
def __init__(self, config):
|
16 |
+
super().__init__()
|
17 |
+
assert config.n_embd % config.n_head == 0
|
18 |
+
# key, query, value projections for all heads, but in a batch
|
19 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
20 |
+
# output projection
|
21 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
22 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
23 |
+
# regularization
|
24 |
+
self.n_head = config.n_head
|
25 |
+
self.n_embd = config.n_embd
|
26 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
30 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
31 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
32 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
33 |
+
qkv = self.c_attn(x)
|
34 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
35 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
38 |
+
|
39 |
+
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
40 |
+
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
41 |
+
# att = F.softmax(att, dim=-1)
|
42 |
+
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
43 |
+
|
44 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal = True) # Flash attention
|
45 |
+
|
46 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
47 |
+
# output projection
|
48 |
+
y = self.c_proj(y)
|
49 |
+
return y
|
50 |
+
|
51 |
+
|
52 |
+
class MLP(nn.Module):
|
53 |
+
|
54 |
+
def __init__(self, config):
|
55 |
+
super().__init__()
|
56 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
57 |
+
self.gelu = nn.GELU(approximate='tanh')
|
58 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
59 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
x = self.c_fc(x)
|
63 |
+
x = self.gelu(x)
|
64 |
+
x = self.c_proj(x)
|
65 |
+
return x
|
66 |
+
|
67 |
+
class Block(nn.Module):
|
68 |
+
|
69 |
+
def __init__(self, config):
|
70 |
+
super().__init__()
|
71 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
72 |
+
self.attn = CausalSelfAttention(config)
|
73 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
74 |
+
self.mlp = MLP(config)
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
x = x + self.attn(self.ln_1(x))
|
78 |
+
x = x + self.mlp(self.ln_2(x))
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
@dataclass
|
83 |
+
class GPTConfig:
|
84 |
+
block_size: int = 1024 # max sequence length
|
85 |
+
vocab_size: int = 50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
86 |
+
n_layer: int = 12 # number of layers
|
87 |
+
n_head: int = 12 # number of heads
|
88 |
+
n_embd: int = 768 # embedding dimension
|
89 |
+
|
90 |
+
|
91 |
+
class GPT(nn.Module):
|
92 |
+
|
93 |
+
def __init__(self, config):
|
94 |
+
super().__init__()
|
95 |
+
self.config = config
|
96 |
+
|
97 |
+
self.transformer = nn.ModuleDict(dict(
|
98 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
99 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
100 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
101 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
102 |
+
))
|
103 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
104 |
+
|
105 |
+
# weight sharing
|
106 |
+
self.transformer.wte.weight = self.lm_head.weight
|
107 |
+
|
108 |
+
# weight initialization
|
109 |
+
self.apply(self._init_weights)
|
110 |
+
|
111 |
+
def _init_weights(self, module):
|
112 |
+
if isinstance(module, nn.Linear):
|
113 |
+
std = 0.02
|
114 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
115 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
116 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
117 |
+
if module.bias is not None:
|
118 |
+
torch.nn.init.zeros_(module.bias)
|
119 |
+
elif isinstance(module, nn.Embedding):
|
120 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
def forward(self, idx, targets=None):
|
125 |
+
# idx is of shape (B, T)
|
126 |
+
B, T = idx.size()
|
127 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
128 |
+
# forward the token and posisition embeddings
|
129 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
130 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
131 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
132 |
+
x = tok_emb + pos_emb
|
133 |
+
# forward the blocks of the transformer
|
134 |
+
for block in self.transformer.h:
|
135 |
+
x = block(x)
|
136 |
+
# forward the final layernorm and the classifier
|
137 |
+
x = self.transformer.ln_f(x)
|
138 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
139 |
+
loss = None
|
140 |
+
if targets is not None:
|
141 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
142 |
+
return logits, loss
|
143 |
+
|
144 |
+
@classmethod
|
145 |
+
def from_pretrained(cls, model_type):
|
146 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
147 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
148 |
+
from transformers import GPT2LMHeadModel
|
149 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
150 |
+
|
151 |
+
# n_layer, n_head and n_embd are determined from model_type
|
152 |
+
config_args = {
|
153 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
154 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
155 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
156 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
157 |
+
}[model_type]
|
158 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
159 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
160 |
+
# create a from-scratch initialized minGPT model
|
161 |
+
config = GPTConfig(**config_args)
|
162 |
+
model = GPT(config)
|
163 |
+
sd = model.state_dict()
|
164 |
+
sd_keys = sd.keys()
|
165 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
166 |
+
|
167 |
+
# init a huggingface/transformers model
|
168 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
169 |
+
sd_hf = model_hf.state_dict()
|
170 |
+
|
171 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
172 |
+
sd_keys_hf = sd_hf.keys()
|
173 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
174 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
175 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
176 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
177 |
+
# this means that we have to transpose these weights when we import them
|
178 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
179 |
+
for k in sd_keys_hf:
|
180 |
+
if any(k.endswith(w) for w in transposed):
|
181 |
+
# special treatment for the Conv1D weights we need to transpose
|
182 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
183 |
+
with torch.no_grad():
|
184 |
+
sd[k].copy_(sd_hf[k].t())
|
185 |
+
else:
|
186 |
+
# vanilla copy over the other parameters
|
187 |
+
assert sd_hf[k].shape == sd[k].shape
|
188 |
+
with torch.no_grad():
|
189 |
+
sd[k].copy_(sd_hf[k])
|
190 |
+
|
191 |
+
return model
|
192 |
+
|
193 |
+
# model = GPT.from_pretrained('gpt2')
|
194 |
+
|
195 |
+
device = 'cpu'
|
196 |
+
if torch.cuda.is_available():
|
197 |
+
device = 'cuda'
|
198 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
199 |
+
device = "mps"
|
200 |
+
print(f"using device: {device}")
|
201 |
+
|
202 |
+
# SEED
|
203 |
+
torch.manual_seed(1337)
|
204 |
+
if torch.cuda.is_available():
|
205 |
+
torch.cuda.manual_seed(1337)
|
206 |
+
|
207 |
+
# STOP
|
208 |
+
num_return_sequences = 5
|
209 |
+
max_length = 30
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
+
import tiktoken
|
214 |
+
|
215 |
+
class DataLoaderLite:
|
216 |
+
def __init__(self, B, T):
|
217 |
+
self.B = B
|
218 |
+
self.T = T
|
219 |
+
|
220 |
+
# at init load tokens from disk and store them in memory
|
221 |
+
with open('input.txt', 'r') as f:
|
222 |
+
text = f.read()
|
223 |
+
enc = tiktoken.get_encoding('gpt2')
|
224 |
+
tokens = enc.encode(text)
|
225 |
+
self.tokens = torch.tensor(tokens)
|
226 |
+
print(f'loaded {len(self.tokens)} tokens')
|
227 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
228 |
+
|
229 |
+
# state
|
230 |
+
self.current_position = 0
|
231 |
+
|
232 |
+
def next_batch(self):
|
233 |
+
B, T = self.B, self.T
|
234 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
235 |
+
x = (buf[:-1]).view(B, T) # inputs
|
236 |
+
y = (buf[1:]).view(B, T) # targets
|
237 |
+
# advance the position in the tensor
|
238 |
+
self.current_position += B*T
|
239 |
+
# if loading the next batch would be out of bounds, reset
|
240 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
241 |
+
self.current_position = 0
|
242 |
+
return x, y
|
243 |
+
|
244 |
+
# CHANGES IN CURRENT CODE
|
245 |
+
torch.set_float32_matmul_precision('high')
|
246 |
+
model = GPT(GPTConfig())
|
247 |
+
model.to(device)
|
248 |
+
# model = torch.compile(model)
|
249 |
+
|
250 |
+
# CODE UPDATE HERE
|
251 |
+
max_lr = 6e-4
|
252 |
+
min_lr = max_lr * 0.1
|
253 |
+
warmup_steps = 10
|
254 |
+
max_steps = 50
|
255 |
+
|
256 |
+
def get_lr(it):
|
257 |
+
if it < warmup_steps:
|
258 |
+
return max_lr * (it + 1) / warmup_steps
|
259 |
+
if it > max_steps:
|
260 |
+
return min_lr
|
261 |
+
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
|
262 |
+
assert 0 <= decay_ratio <=1
|
263 |
+
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
264 |
+
return min_lr + coeff * (max_lr - min_lr)
|
265 |
+
|
266 |
+
train_loader = DataLoaderLite(B = 16, T = 1024)
|
267 |
+
|
268 |
+
# NEW CODE
|
269 |
+
import time
|
270 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4, betas=(0.9, 0.95), eps=1e-8)
|
271 |
+
for step in range(50):
|
272 |
+
t0 = time.time()
|
273 |
+
x, y = train_loader.next_batch()
|
274 |
+
x, y = x.to(device), y.to(device)
|
275 |
+
optimizer.zero_grad()
|
276 |
+
# NEW CODE ADDED HERE
|
277 |
+
with torch.autocast(device_type=device, dtype=torch.bfloat16):
|
278 |
+
logits, loss = model(x, y)
|
279 |
+
loss.backward()
|
280 |
+
norm = torch.nn.utils.clip_grad_norm(model.parameters(), 1.0)
|
281 |
+
# NEW CODE
|
282 |
+
lr = get_lr(step)
|
283 |
+
for param_group in optimizer.param_groups:
|
284 |
+
param_group['lr'] = lr
|
285 |
+
|
286 |
+
optimizer.step()
|
287 |
+
torch.cuda.synchronize()
|
288 |
+
t1 = time.time()
|
289 |
+
dt = (t1 - t0) * 1000
|
290 |
+
tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0)
|
291 |
+
print(f'step{step} | loss: {loss.item()} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec: .2f} | norm: {norm:.2f}')
|
292 |
+
|
293 |
+
|
294 |
+
print(loss)
|
295 |
+
import sys; sys.exit(0)
|
296 |
+
|
297 |
+
torch.manual_seed(42)
|
298 |
+
torch.cuda.manual_seed(42)
|
299 |
+
while x.size(1) < max_length:
|
300 |
+
# forward the model to get the logits
|
301 |
+
with torch.no_grad():
|
302 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
303 |
+
# take the logits at the last position
|
304 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
305 |
+
# get the probabilities
|
306 |
+
probs = F.softmax(logits, dim=-1)
|
307 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
308 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
309 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
310 |
+
# select a token from the top-k probabilities
|
311 |
+
# note: multinomial does not demand the input to sum to 1
|
312 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
313 |
+
# gather the corresponding indices
|
314 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
315 |
+
# append to the sequence
|
316 |
+
x = torch.cat((x, xcol), dim=1)
|
317 |
+
|
318 |
+
# print the generated text
|
319 |
+
for i in range(num_return_sequences):
|
320 |
+
tokens = x[i, :max_length].tolist()
|
321 |
+
decoded = enc.decode(tokens)
|
322 |
+
print(">", decoded)
|
CodeFiles/train_get2-9-speedup9.py
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# GPT-3 Paper
|
2 |
+
# add cosing delay
|
3 |
+
import os
|
4 |
+
import math
|
5 |
+
import time
|
6 |
+
import inspect
|
7 |
+
from dataclasses import dataclass
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
|
12 |
+
|
13 |
+
class CausalSelfAttention(nn.Module):
|
14 |
+
|
15 |
+
def __init__(self, config):
|
16 |
+
super().__init__()
|
17 |
+
assert config.n_embd % config.n_head == 0
|
18 |
+
# key, query, value projections for all heads, but in a batch
|
19 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
20 |
+
# output projection
|
21 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
22 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
23 |
+
# regularization
|
24 |
+
self.n_head = config.n_head
|
25 |
+
self.n_embd = config.n_embd
|
26 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
30 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
31 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
32 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
33 |
+
qkv = self.c_attn(x)
|
34 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
35 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
36 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
38 |
+
|
39 |
+
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
40 |
+
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
41 |
+
# att = F.softmax(att, dim=-1)
|
42 |
+
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
43 |
+
|
44 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal = True) # Flash attention
|
45 |
+
|
46 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
47 |
+
# output projection
|
48 |
+
y = self.c_proj(y)
|
49 |
+
return y
|
50 |
+
|
51 |
+
|
52 |
+
class MLP(nn.Module):
|
53 |
+
|
54 |
+
def __init__(self, config):
|
55 |
+
super().__init__()
|
56 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
57 |
+
self.gelu = nn.GELU(approximate='tanh')
|
58 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
59 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
60 |
+
|
61 |
+
def forward(self, x):
|
62 |
+
x = self.c_fc(x)
|
63 |
+
x = self.gelu(x)
|
64 |
+
x = self.c_proj(x)
|
65 |
+
return x
|
66 |
+
|
67 |
+
class Block(nn.Module):
|
68 |
+
|
69 |
+
def __init__(self, config):
|
70 |
+
super().__init__()
|
71 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
72 |
+
self.attn = CausalSelfAttention(config)
|
73 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
74 |
+
self.mlp = MLP(config)
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
x = x + self.attn(self.ln_1(x))
|
78 |
+
x = x + self.mlp(self.ln_2(x))
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
@dataclass
|
83 |
+
class GPTConfig:
|
84 |
+
block_size: int = 1024 # max sequence length
|
85 |
+
vocab_size: int = 50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
86 |
+
n_layer: int = 12 # number of layers
|
87 |
+
n_head: int = 12 # number of heads
|
88 |
+
n_embd: int = 768 # embedding dimension
|
89 |
+
|
90 |
+
|
91 |
+
class GPT(nn.Module):
|
92 |
+
|
93 |
+
def __init__(self, config):
|
94 |
+
super().__init__()
|
95 |
+
self.config = config
|
96 |
+
|
97 |
+
self.transformer = nn.ModuleDict(dict(
|
98 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
99 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
100 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
101 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
102 |
+
))
|
103 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
104 |
+
|
105 |
+
# weight sharing
|
106 |
+
self.transformer.wte.weight = self.lm_head.weight
|
107 |
+
|
108 |
+
# weight initialization
|
109 |
+
self.apply(self._init_weights)
|
110 |
+
|
111 |
+
def _init_weights(self, module):
|
112 |
+
if isinstance(module, nn.Linear):
|
113 |
+
std = 0.02
|
114 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
115 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
116 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
117 |
+
if module.bias is not None:
|
118 |
+
torch.nn.init.zeros_(module.bias)
|
119 |
+
elif isinstance(module, nn.Embedding):
|
120 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
def forward(self, idx, targets=None):
|
125 |
+
# idx is of shape (B, T)
|
126 |
+
B, T = idx.size()
|
127 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
128 |
+
# forward the token and posisition embeddings
|
129 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
130 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
131 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
132 |
+
x = tok_emb + pos_emb
|
133 |
+
# forward the blocks of the transformer
|
134 |
+
for block in self.transformer.h:
|
135 |
+
x = block(x)
|
136 |
+
# forward the final layernorm and the classifier
|
137 |
+
x = self.transformer.ln_f(x)
|
138 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
139 |
+
loss = None
|
140 |
+
if targets is not None:
|
141 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
142 |
+
return logits, loss
|
143 |
+
|
144 |
+
@classmethod
|
145 |
+
def from_pretrained(cls, model_type):
|
146 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
147 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
148 |
+
from transformers import GPT2LMHeadModel
|
149 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
150 |
+
|
151 |
+
# n_layer, n_head and n_embd are determined from model_type
|
152 |
+
config_args = {
|
153 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
154 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
155 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
156 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
157 |
+
}[model_type]
|
158 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
159 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
160 |
+
# create a from-scratch initialized minGPT model
|
161 |
+
config = GPTConfig(**config_args)
|
162 |
+
model = GPT(config)
|
163 |
+
sd = model.state_dict()
|
164 |
+
sd_keys = sd.keys()
|
165 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
166 |
+
|
167 |
+
# init a huggingface/transformers model
|
168 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
169 |
+
sd_hf = model_hf.state_dict()
|
170 |
+
|
171 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
172 |
+
sd_keys_hf = sd_hf.keys()
|
173 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
174 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
175 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
176 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
177 |
+
# this means that we have to transpose these weights when we import them
|
178 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
179 |
+
for k in sd_keys_hf:
|
180 |
+
if any(k.endswith(w) for w in transposed):
|
181 |
+
# special treatment for the Conv1D weights we need to transpose
|
182 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
183 |
+
with torch.no_grad():
|
184 |
+
sd[k].copy_(sd_hf[k].t())
|
185 |
+
else:
|
186 |
+
# vanilla copy over the other parameters
|
187 |
+
assert sd_hf[k].shape == sd[k].shape
|
188 |
+
with torch.no_grad():
|
189 |
+
sd[k].copy_(sd_hf[k])
|
190 |
+
|
191 |
+
return model
|
192 |
+
|
193 |
+
def configure_optimizers(self, weight_decay, learning_rate, device_type):
|
194 |
+
# start with all of the candidate parameters (that require grad)
|
195 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
196 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
197 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
198 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
199 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
200 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
201 |
+
optim_groups = [
|
202 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
203 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
204 |
+
]
|
205 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
206 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
207 |
+
|
208 |
+
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
209 |
+
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
210 |
+
# Create AdamW optimizer and use the fused version if it is available
|
211 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
212 |
+
use_fused = fused_available and device_type == "cuda"
|
213 |
+
|
214 |
+
print(f"using fused AdamW: {use_fused}")
|
215 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
|
216 |
+
return optimizer
|
217 |
+
|
218 |
+
# model = GPT.from_pretrained('gpt2')
|
219 |
+
|
220 |
+
device = 'cpu'
|
221 |
+
if torch.cuda.is_available():
|
222 |
+
device = 'cuda'
|
223 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
224 |
+
device = "mps"
|
225 |
+
print(f"using device: {device}")
|
226 |
+
|
227 |
+
# SEED
|
228 |
+
torch.manual_seed(1337)
|
229 |
+
if torch.cuda.is_available():
|
230 |
+
torch.cuda.manual_seed(1337)
|
231 |
+
|
232 |
+
# STOP
|
233 |
+
num_return_sequences = 5
|
234 |
+
max_length = 30
|
235 |
+
|
236 |
+
|
237 |
+
|
238 |
+
import tiktoken
|
239 |
+
import os
|
240 |
+
os.environ['TIKTOKEN_CACHE_DIR'] = '/raid/users/mohammadibrahim-st/TSAI/Assignment21/tmp'
|
241 |
+
class DataLoaderLite:
|
242 |
+
def __init__(self, B, T):
|
243 |
+
self.B = B
|
244 |
+
self.T = T
|
245 |
+
|
246 |
+
# at init load tokens from disk and store them in memory
|
247 |
+
with open('/raid/users/mohammadibrahim-st/TSAI/Assignment21/input.txt', 'r') as f:
|
248 |
+
text = f.read()
|
249 |
+
enc = tiktoken.get_encoding('gpt2')
|
250 |
+
tokens = enc.encode(text)
|
251 |
+
self.tokens = torch.tensor(tokens)
|
252 |
+
print(f'loaded {len(self.tokens)} tokens')
|
253 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
254 |
+
|
255 |
+
# state
|
256 |
+
self.current_position = 0
|
257 |
+
|
258 |
+
def next_batch(self):
|
259 |
+
B, T = self.B, self.T
|
260 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
261 |
+
x = (buf[:-1]).view(B, T) # inputs
|
262 |
+
y = (buf[1:]).view(B, T) # targets
|
263 |
+
# advance the position in the tensor
|
264 |
+
self.current_position += B*T
|
265 |
+
# if loading the next batch would be out of bounds, reset
|
266 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
267 |
+
self.current_position = 0
|
268 |
+
return x, y
|
269 |
+
|
270 |
+
# CHANGES IN CURRENT CODE
|
271 |
+
torch.set_float32_matmul_precision('high')
|
272 |
+
model = GPT(GPTConfig())
|
273 |
+
model.to(device)
|
274 |
+
# model = torch.compile(model)
|
275 |
+
|
276 |
+
# CODE UPDATE HERE
|
277 |
+
max_lr = 6e-4
|
278 |
+
min_lr = max_lr * 0.1
|
279 |
+
warmup_steps = 10
|
280 |
+
max_steps = 5000
|
281 |
+
|
282 |
+
def get_lr(it):
|
283 |
+
if it < warmup_steps:
|
284 |
+
return max_lr * (it + 1) / warmup_steps
|
285 |
+
if it > max_steps:
|
286 |
+
return min_lr
|
287 |
+
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
|
288 |
+
assert 0 <= decay_ratio <=1
|
289 |
+
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
290 |
+
return min_lr + coeff * (max_lr - min_lr)
|
291 |
+
|
292 |
+
train_loader = DataLoaderLite(B = 16, T = 1024)
|
293 |
+
|
294 |
+
# NEW CODE
|
295 |
+
import time
|
296 |
+
# optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4, betas=(0.9, 0.95), eps=1e-8)
|
297 |
+
optimizer = model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type=device)
|
298 |
+
for step in range(max_steps):
|
299 |
+
t0 = time.time()
|
300 |
+
x, y = train_loader.next_batch()
|
301 |
+
x, y = x.to(device), y.to(device)
|
302 |
+
optimizer.zero_grad()
|
303 |
+
# NEW CODE ADDED HERE
|
304 |
+
with torch.autocast(device_type=device, dtype=torch.bfloat16):
|
305 |
+
logits, loss = model(x, y)
|
306 |
+
loss.backward()
|
307 |
+
norm = torch.nn.utils.clip_grad_norm(model.parameters(), 1.0)
|
308 |
+
# NEW CODE
|
309 |
+
lr = get_lr(step)
|
310 |
+
for param_group in optimizer.param_groups:
|
311 |
+
param_group['lr'] = lr
|
312 |
+
|
313 |
+
optimizer.step()
|
314 |
+
torch.cuda.synchronize()
|
315 |
+
t1 = time.time()
|
316 |
+
dt = (t1 - t0) * 1000
|
317 |
+
tokens_per_sec = (train_loader.B * train_loader.T) / (t1 - t0)
|
318 |
+
print(f'step{step} | loss: {loss.item()} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec: .2f} | norm: {norm:.2f}')
|
319 |
+
|
320 |
+
|
321 |
+
print(loss)
|
322 |
+
model_save_path = '/raid/users/mohammadibrahim-st/TSAI/Assignment21/model5k.pt'
|
323 |
+
torch.save(model.state_dict(), model_save_path)
|
324 |
+
print(f'Trained model saved at: {model_save_path}')
|
325 |
+
import sys; sys.exit(0)
|
326 |
+
|
327 |
+
torch.manual_seed(42)
|
328 |
+
torch.cuda.manual_seed(42)
|
329 |
+
while x.size(1) < max_length:
|
330 |
+
# forward the model to get the logits
|
331 |
+
with torch.no_grad():
|
332 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
333 |
+
# take the logits at the last position
|
334 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
335 |
+
# get the probabilities
|
336 |
+
probs = F.softmax(logits, dim=-1)
|
337 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
338 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
339 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
340 |
+
# select a token from the top-k probabilities
|
341 |
+
# note: multinomial does not demand the input to sum to 1
|
342 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
343 |
+
# gather the corresponding indices
|
344 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
345 |
+
# append to the sequence
|
346 |
+
x = torch.cat((x, xcol), dim=1)
|
347 |
+
|
348 |
+
# print the generated text
|
349 |
+
for i in range(num_return_sequences):
|
350 |
+
tokens = x[i, :max_length].tolist()
|
351 |
+
decoded = enc.decode(tokens)
|
352 |
+
print(">", decoded)
|
app.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
import tiktoken
|
5 |
+
import os
|
6 |
+
import math
|
7 |
+
import time
|
8 |
+
import gradio as gr
|
9 |
+
import inspect
|
10 |
+
from dataclasses import dataclass
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
from torch.nn import functional as F
|
14 |
+
import os
|
15 |
+
# os.environ['TIKTOKEN_CACHE_DIR'] = '/raid/users/mohammadibrahim-st/TSAI/Assignment21/tmp'
|
16 |
+
class CausalSelfAttention(nn.Module):
|
17 |
+
|
18 |
+
def __init__(self, config):
|
19 |
+
super().__init__()
|
20 |
+
assert config.n_embd % config.n_head == 0
|
21 |
+
# key, query, value projections for all heads, but in a batch
|
22 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
23 |
+
# output projection
|
24 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
25 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
26 |
+
# regularization
|
27 |
+
self.n_head = config.n_head
|
28 |
+
self.n_embd = config.n_embd
|
29 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
33 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
34 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
35 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
36 |
+
qkv = self.c_attn(x)
|
37 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
38 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
39 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
40 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
41 |
+
|
42 |
+
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
43 |
+
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
44 |
+
# att = F.softmax(att, dim=-1)
|
45 |
+
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
46 |
+
|
47 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal = True) # Flash attention
|
48 |
+
|
49 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
50 |
+
# output projection
|
51 |
+
y = self.c_proj(y)
|
52 |
+
return y
|
53 |
+
|
54 |
+
|
55 |
+
class MLP(nn.Module):
|
56 |
+
|
57 |
+
def __init__(self, config):
|
58 |
+
super().__init__()
|
59 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
60 |
+
self.gelu = nn.GELU(approximate='tanh')
|
61 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
62 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
x = self.c_fc(x)
|
66 |
+
x = self.gelu(x)
|
67 |
+
x = self.c_proj(x)
|
68 |
+
return x
|
69 |
+
|
70 |
+
class Block(nn.Module):
|
71 |
+
|
72 |
+
def __init__(self, config):
|
73 |
+
super().__init__()
|
74 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
75 |
+
self.attn = CausalSelfAttention(config)
|
76 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
77 |
+
self.mlp = MLP(config)
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
x = x + self.attn(self.ln_1(x))
|
81 |
+
x = x + self.mlp(self.ln_2(x))
|
82 |
+
return x
|
83 |
+
|
84 |
+
@dataclass
|
85 |
+
class GPTConfig:
|
86 |
+
block_size: int = 1024 # max sequence length
|
87 |
+
vocab_size: int = 50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
88 |
+
n_layer: int = 12 # number of layers
|
89 |
+
n_head: int = 12 # number of heads
|
90 |
+
n_embd: int = 768 # embedding dimension
|
91 |
+
|
92 |
+
|
93 |
+
class GPT(nn.Module):
|
94 |
+
|
95 |
+
def __init__(self, config):
|
96 |
+
super().__init__()
|
97 |
+
self.config = config
|
98 |
+
|
99 |
+
self.transformer = nn.ModuleDict(dict(
|
100 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
101 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
102 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
103 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
104 |
+
))
|
105 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
106 |
+
|
107 |
+
# weight sharing
|
108 |
+
self.transformer.wte.weight = self.lm_head.weight
|
109 |
+
|
110 |
+
# weight initialization
|
111 |
+
self.apply(self._init_weights)
|
112 |
+
|
113 |
+
def _init_weights(self, module):
|
114 |
+
if isinstance(module, nn.Linear):
|
115 |
+
std = 0.02
|
116 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
117 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
118 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
119 |
+
if module.bias is not None:
|
120 |
+
torch.nn.init.zeros_(module.bias)
|
121 |
+
elif isinstance(module, nn.Embedding):
|
122 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
def forward(self, idx, targets=None):
|
127 |
+
# idx is of shape (B, T)
|
128 |
+
B, T = idx.size()
|
129 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
130 |
+
# forward the token and posisition embeddings
|
131 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
132 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
133 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
134 |
+
x = tok_emb + pos_emb
|
135 |
+
# forward the blocks of the transformer
|
136 |
+
for block in self.transformer.h:
|
137 |
+
x = block(x)
|
138 |
+
# forward the final layernorm and the classifier
|
139 |
+
x = self.transformer.ln_f(x)
|
140 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
141 |
+
loss = None
|
142 |
+
if targets is not None:
|
143 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
144 |
+
return logits, loss
|
145 |
+
|
146 |
+
@classmethod
|
147 |
+
def from_pretrained(cls, model_type):
|
148 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
149 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
150 |
+
from transformers import GPT2LMHeadModel
|
151 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
152 |
+
|
153 |
+
# n_layer, n_head and n_embd are determined from model_type
|
154 |
+
config_args = {
|
155 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
156 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
157 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
158 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
159 |
+
}[model_type]
|
160 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
161 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
162 |
+
# create a from-scratch initialized minGPT model
|
163 |
+
config = GPTConfig(**config_args)
|
164 |
+
model = GPT(config)
|
165 |
+
sd = model.state_dict()
|
166 |
+
sd_keys = sd.keys()
|
167 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
168 |
+
|
169 |
+
# init a huggingface/transformers model
|
170 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
171 |
+
sd_hf = model_hf.state_dict()
|
172 |
+
|
173 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
174 |
+
sd_keys_hf = sd_hf.keys()
|
175 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
176 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
177 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
178 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
179 |
+
# this means that we have to transpose these weights when we import them
|
180 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
181 |
+
for k in sd_keys_hf:
|
182 |
+
if any(k.endswith(w) for w in transposed):
|
183 |
+
# special treatment for the Conv1D weights we need to transpose
|
184 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
185 |
+
with torch.no_grad():
|
186 |
+
sd[k].copy_(sd_hf[k].t())
|
187 |
+
else:
|
188 |
+
# vanilla copy over the other parameters
|
189 |
+
assert sd_hf[k].shape == sd[k].shape
|
190 |
+
with torch.no_grad():
|
191 |
+
sd[k].copy_(sd_hf[k])
|
192 |
+
|
193 |
+
return model
|
194 |
+
|
195 |
+
def configure_optimizers(self, weight_decay, learning_rate, device_type):
|
196 |
+
# start with all of the candidate parameters (that require grad)
|
197 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
198 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
199 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
200 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
201 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
202 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
203 |
+
optim_groups = [
|
204 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
205 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
206 |
+
]
|
207 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
208 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
209 |
+
|
210 |
+
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
211 |
+
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
212 |
+
# Create AdamW optimizer and use the fused version if it is available
|
213 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
214 |
+
use_fused = fused_available and device_type == "cuda"
|
215 |
+
|
216 |
+
print(f"using fused AdamW: {use_fused}")
|
217 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
|
218 |
+
return optimizer
|
219 |
+
|
220 |
+
|
221 |
+
# Set the device
|
222 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
223 |
+
num_return_sequences = 5
|
224 |
+
max_length = 30
|
225 |
+
# Load the trained model
|
226 |
+
import os
|
227 |
+
current_directory = os.path.dirname(os.path.abspath(__file__))
|
228 |
+
|
229 |
+
# Set the model path to the same directory as the Python file
|
230 |
+
model_save_path = os.path.join(current_directory, 'model5k.pt')
|
231 |
+
model = GPT(GPTConfig())
|
232 |
+
model.load_state_dict(torch.load(model_save_path))
|
233 |
+
model.to(device)
|
234 |
+
model.eval()
|
235 |
+
|
236 |
+
# Tokenizer
|
237 |
+
enc = tiktoken.get_encoding('gpt2')
|
238 |
+
def generate_text(user_prompt):
|
239 |
+
num_return_sequences = 5
|
240 |
+
max_length = 30
|
241 |
+
|
242 |
+
# Tokenize input prompt
|
243 |
+
tokens = enc.encode(user_prompt)
|
244 |
+
tokens = torch.tensor(tokens, dtype=torch.long)
|
245 |
+
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1) # Repeat for each sequence
|
246 |
+
x = tokens.to(device)
|
247 |
+
|
248 |
+
# Fix seeds for reproducibility
|
249 |
+
torch.manual_seed(42)
|
250 |
+
torch.cuda.manual_seed(42)
|
251 |
+
|
252 |
+
# Generate sequences until max_length
|
253 |
+
while x.size(1) < max_length:
|
254 |
+
with torch.no_grad():
|
255 |
+
logits = model(x)[0] # Get logits
|
256 |
+
logits = logits[:, -1, :] # Take the logits at the last position
|
257 |
+
probs = F.softmax(logits, dim=-1) # Get the probabilities
|
258 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1) # Top-k sampling
|
259 |
+
ix = torch.multinomial(topk_probs, 1) # Select a token
|
260 |
+
xcol = torch.gather(topk_indices, -1, ix) # Gather the corresponding indices
|
261 |
+
x = torch.cat((x, xcol), dim=1) # Append the selected token to the sequence
|
262 |
+
|
263 |
+
# Decode and return generated sequences
|
264 |
+
generated_texts = []
|
265 |
+
for i in range(num_return_sequences):
|
266 |
+
tokens = x[i, :max_length].tolist()
|
267 |
+
decoded = enc.decode(tokens)
|
268 |
+
generated_texts.append(decoded)
|
269 |
+
|
270 |
+
return "\n\n".join(generated_texts)
|
271 |
+
|
272 |
+
# Create Gradio interface
|
273 |
+
iface = gr.Interface(fn=generate_text,
|
274 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
|
275 |
+
outputs="text",
|
276 |
+
title="GPT Text Generator",
|
277 |
+
description="Generate text using your trained GPT model. Enter a prompt and see what the model generates.")
|
278 |
+
|
279 |
+
# Launch the Gradio app
|
280 |
+
iface.launch()
|
infer.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
import tiktoken
|
5 |
+
import os
|
6 |
+
import math
|
7 |
+
import time
|
8 |
+
import inspect
|
9 |
+
from dataclasses import dataclass
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
from torch.nn import functional as F
|
13 |
+
import os
|
14 |
+
os.environ['TIKTOKEN_CACHE_DIR'] = '/raid/users/mohammadibrahim-st/TSAI/Assignment21/tmp'
|
15 |
+
class CausalSelfAttention(nn.Module):
|
16 |
+
|
17 |
+
def __init__(self, config):
|
18 |
+
super().__init__()
|
19 |
+
assert config.n_embd % config.n_head == 0
|
20 |
+
# key, query, value projections for all heads, but in a batch
|
21 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
22 |
+
# output projection
|
23 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
24 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
25 |
+
# regularization
|
26 |
+
self.n_head = config.n_head
|
27 |
+
self.n_embd = config.n_embd
|
28 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
32 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
33 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
34 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
35 |
+
qkv = self.c_attn(x)
|
36 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
37 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
38 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
39 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
40 |
+
|
41 |
+
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
42 |
+
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
43 |
+
# att = F.softmax(att, dim=-1)
|
44 |
+
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
45 |
+
|
46 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal = True) # Flash attention
|
47 |
+
|
48 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
49 |
+
# output projection
|
50 |
+
y = self.c_proj(y)
|
51 |
+
return y
|
52 |
+
|
53 |
+
|
54 |
+
class MLP(nn.Module):
|
55 |
+
|
56 |
+
def __init__(self, config):
|
57 |
+
super().__init__()
|
58 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
59 |
+
self.gelu = nn.GELU(approximate='tanh')
|
60 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
61 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
x = self.c_fc(x)
|
65 |
+
x = self.gelu(x)
|
66 |
+
x = self.c_proj(x)
|
67 |
+
return x
|
68 |
+
|
69 |
+
class Block(nn.Module):
|
70 |
+
|
71 |
+
def __init__(self, config):
|
72 |
+
super().__init__()
|
73 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
74 |
+
self.attn = CausalSelfAttention(config)
|
75 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
76 |
+
self.mlp = MLP(config)
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
x = x + self.attn(self.ln_1(x))
|
80 |
+
x = x + self.mlp(self.ln_2(x))
|
81 |
+
return x
|
82 |
+
|
83 |
+
@dataclass
|
84 |
+
class GPTConfig:
|
85 |
+
block_size: int = 1024 # max sequence length
|
86 |
+
vocab_size: int = 50304 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
87 |
+
n_layer: int = 12 # number of layers
|
88 |
+
n_head: int = 12 # number of heads
|
89 |
+
n_embd: int = 768 # embedding dimension
|
90 |
+
|
91 |
+
|
92 |
+
class GPT(nn.Module):
|
93 |
+
|
94 |
+
def __init__(self, config):
|
95 |
+
super().__init__()
|
96 |
+
self.config = config
|
97 |
+
|
98 |
+
self.transformer = nn.ModuleDict(dict(
|
99 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
100 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
101 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
102 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
103 |
+
))
|
104 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
105 |
+
|
106 |
+
# weight sharing
|
107 |
+
self.transformer.wte.weight = self.lm_head.weight
|
108 |
+
|
109 |
+
# weight initialization
|
110 |
+
self.apply(self._init_weights)
|
111 |
+
|
112 |
+
def _init_weights(self, module):
|
113 |
+
if isinstance(module, nn.Linear):
|
114 |
+
std = 0.02
|
115 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
116 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
117 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
118 |
+
if module.bias is not None:
|
119 |
+
torch.nn.init.zeros_(module.bias)
|
120 |
+
elif isinstance(module, nn.Embedding):
|
121 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
def forward(self, idx, targets=None):
|
126 |
+
# idx is of shape (B, T)
|
127 |
+
B, T = idx.size()
|
128 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
129 |
+
# forward the token and posisition embeddings
|
130 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
131 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
132 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
133 |
+
x = tok_emb + pos_emb
|
134 |
+
# forward the blocks of the transformer
|
135 |
+
for block in self.transformer.h:
|
136 |
+
x = block(x)
|
137 |
+
# forward the final layernorm and the classifier
|
138 |
+
x = self.transformer.ln_f(x)
|
139 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
140 |
+
loss = None
|
141 |
+
if targets is not None:
|
142 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
143 |
+
return logits, loss
|
144 |
+
|
145 |
+
@classmethod
|
146 |
+
def from_pretrained(cls, model_type):
|
147 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
148 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
149 |
+
from transformers import GPT2LMHeadModel
|
150 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
151 |
+
|
152 |
+
# n_layer, n_head and n_embd are determined from model_type
|
153 |
+
config_args = {
|
154 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
155 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
156 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
157 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
158 |
+
}[model_type]
|
159 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
160 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
161 |
+
# create a from-scratch initialized minGPT model
|
162 |
+
config = GPTConfig(**config_args)
|
163 |
+
model = GPT(config)
|
164 |
+
sd = model.state_dict()
|
165 |
+
sd_keys = sd.keys()
|
166 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
167 |
+
|
168 |
+
# init a huggingface/transformers model
|
169 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
170 |
+
sd_hf = model_hf.state_dict()
|
171 |
+
|
172 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
173 |
+
sd_keys_hf = sd_hf.keys()
|
174 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
175 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
176 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
177 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
178 |
+
# this means that we have to transpose these weights when we import them
|
179 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
180 |
+
for k in sd_keys_hf:
|
181 |
+
if any(k.endswith(w) for w in transposed):
|
182 |
+
# special treatment for the Conv1D weights we need to transpose
|
183 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
184 |
+
with torch.no_grad():
|
185 |
+
sd[k].copy_(sd_hf[k].t())
|
186 |
+
else:
|
187 |
+
# vanilla copy over the other parameters
|
188 |
+
assert sd_hf[k].shape == sd[k].shape
|
189 |
+
with torch.no_grad():
|
190 |
+
sd[k].copy_(sd_hf[k])
|
191 |
+
|
192 |
+
return model
|
193 |
+
|
194 |
+
def configure_optimizers(self, weight_decay, learning_rate, device_type):
|
195 |
+
# start with all of the candidate parameters (that require grad)
|
196 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
197 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
198 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
199 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
|
200 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
201 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
202 |
+
optim_groups = [
|
203 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
204 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
205 |
+
]
|
206 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
207 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
208 |
+
|
209 |
+
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
|
210 |
+
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
211 |
+
# Create AdamW optimizer and use the fused version if it is available
|
212 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
213 |
+
use_fused = fused_available and device_type == "cuda"
|
214 |
+
|
215 |
+
print(f"using fused AdamW: {use_fused}")
|
216 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
|
217 |
+
return optimizer
|
218 |
+
|
219 |
+
|
220 |
+
# Set the device
|
221 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
222 |
+
num_return_sequences = 5
|
223 |
+
max_length = 30
|
224 |
+
# Load the trained model
|
225 |
+
import os
|
226 |
+
# Set the model save path to the current directory
|
227 |
+
model_save_path = os.path.join(os.getcwd(), 'model5k.pt')
|
228 |
+
model = GPT(GPTConfig())
|
229 |
+
model.load_state_dict(torch.load(model_save_path))
|
230 |
+
model.to(device)
|
231 |
+
model.eval()
|
232 |
+
|
233 |
+
# Tokenizer
|
234 |
+
enc = tiktoken.get_encoding('gpt2')
|
235 |
+
tokens = enc.encode("Hello, I'm a language model,")
|
236 |
+
tokens = torch.tensor(tokens, dtype= torch.long) # (8,) #check tiktoken app
|
237 |
+
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1) # (5, 8)
|
238 |
+
x = tokens.to('cuda')
|
239 |
+
|
240 |
+
torch.manual_seed(42)
|
241 |
+
torch.cuda.manual_seed(42)
|
242 |
+
while x.size(1) < max_length:
|
243 |
+
# forward the model to get the logits
|
244 |
+
with torch.no_grad():
|
245 |
+
logits = model(x)[0] # (B, T, vocab_size)
|
246 |
+
# take the logits at the last position
|
247 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
248 |
+
# get the probabilities
|
249 |
+
probs = F.softmax(logits, dim=-1)
|
250 |
+
# do top-k sampling of 50 (huggingface pipeline default)
|
251 |
+
# topk_probs here becomes (5, 50), topk_indices is (5, 50)
|
252 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
253 |
+
# select a token from the top-k probabilities
|
254 |
+
# note: multinomial does not demand the input to sum to 1
|
255 |
+
ix = torch.multinomial(topk_probs, 1) # (B, 1)
|
256 |
+
# gather the corresponding indices
|
257 |
+
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
|
258 |
+
# append to the sequence
|
259 |
+
x = torch.cat((x, xcol), dim=1)
|
260 |
+
|
261 |
+
# print the generated text
|
262 |
+
for i in range(num_return_sequences):
|
263 |
+
tokens = x[i, :max_length].tolist()
|
264 |
+
decoded = enc.decode(tokens)
|
265 |
+
print(">", decoded)
|
input.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model5k.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2f929c6742de81974c6bfd22a15941e247c04803f09be17fcab94806620779d
|
3 |
+
size 548292146
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
tiktoken
|
tmp/6c7ea1a7e38e3a7f062df639a5b80947f075ffe6
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tmp/6d1cbeee0f20b3d9449abfede4726ed8212e3aee
ADDED
The diff for this file is too large to render.
See raw diff
|
|