|
|
|
|
|
from __future__ import annotations |
|
|
|
import gc |
|
import pathlib |
|
import sys |
|
|
|
import cv2 |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from diffusers import (ControlNetModel, DiffusionPipeline, |
|
StableDiffusionControlNetPipeline, |
|
UniPCMultistepScheduler) |
|
|
|
repo_dir = pathlib.Path(__file__).parent |
|
submodule_dir = repo_dir / 'ControlNet' |
|
sys.path.append(submodule_dir.as_posix()) |
|
|
|
try: |
|
from annotator.canny import apply_canny |
|
from annotator.hed import apply_hed, nms |
|
from annotator.midas import apply_midas |
|
from annotator.mlsd import apply_mlsd |
|
from annotator.openpose import apply_openpose |
|
from annotator.uniformer import apply_uniformer |
|
from annotator.util import HWC3, resize_image |
|
except Exception: |
|
pass |
|
|
|
CONTROLNET_MODEL_IDS = { |
|
'canny': 'lllyasviel/sd-controlnet-canny', |
|
'hough': 'lllyasviel/sd-controlnet-mlsd', |
|
'hed': 'lllyasviel/sd-controlnet-hed', |
|
'scribble': 'lllyasviel/sd-controlnet-scribble', |
|
'pose': 'lllyasviel/sd-controlnet-openpose', |
|
'seg': 'lllyasviel/sd-controlnet-seg', |
|
'depth': 'lllyasviel/sd-controlnet-depth', |
|
'normal': 'lllyasviel/sd-controlnet-normal', |
|
} |
|
|
|
|
|
def download_all_controlnet_weights() -> None: |
|
for model_id in CONTROLNET_MODEL_IDS.values(): |
|
ControlNetModel.from_pretrained(model_id) |
|
|
|
|
|
class Model: |
|
def __init__(self, |
|
base_model_id: str = 'runwayml/stable-diffusion-v1-5', |
|
task_name: str = 'canny'): |
|
self.device = torch.device( |
|
'cuda:0' if torch.cuda.is_available() else 'cpu') |
|
self.base_model_id = '' |
|
self.task_name = '' |
|
self.pipe = self.load_pipe(base_model_id, task_name) |
|
|
|
def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline: |
|
if self.device.type == 'cpu': |
|
return None |
|
if base_model_id == self.base_model_id and task_name == self.task_name and hasattr( |
|
self, 'pipe'): |
|
return self.pipe |
|
model_id = CONTROLNET_MODEL_IDS[task_name] |
|
controlnet = ControlNetModel.from_pretrained(model_id, |
|
torch_dtype=torch.float16) |
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
base_model_id, |
|
safety_checker=None, |
|
controlnet=controlnet, |
|
torch_dtype=torch.float16) |
|
pipe.scheduler = UniPCMultistepScheduler.from_config( |
|
pipe.scheduler.config) |
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe.to(self.device) |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
self.base_model_id = base_model_id |
|
self.task_name = task_name |
|
return pipe |
|
|
|
def set_base_model(self, base_model_id: str) -> str: |
|
if not base_model_id or base_model_id == self.base_model_id: |
|
return self.base_model_id |
|
del self.pipe |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
try: |
|
self.pipe = self.load_pipe(base_model_id, self.task_name) |
|
except Exception: |
|
self.pipe = self.load_pipe(self.base_model_id, self.task_name) |
|
return self.base_model_id |
|
|
|
def load_controlnet_weight(self, task_name: str) -> None: |
|
if task_name == self.task_name: |
|
return |
|
if hasattr(self.pipe, 'controlnet'): |
|
del self.pipe.controlnet |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
model_id = CONTROLNET_MODEL_IDS[task_name] |
|
controlnet = ControlNetModel.from_pretrained(model_id, |
|
torch_dtype=torch.float16) |
|
controlnet.to(self.device) |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
self.pipe.controlnet = controlnet |
|
self.task_name = task_name |
|
|
|
def get_prompt(self, prompt: str, additional_prompt: str) -> str: |
|
if not prompt: |
|
prompt = additional_prompt |
|
else: |
|
prompt = f'{prompt}, {additional_prompt}' |
|
return prompt |
|
|
|
@torch.autocast('cuda') |
|
def run_pipe( |
|
self, |
|
prompt: str, |
|
negative_prompt: str, |
|
control_image: PIL.Image.Image, |
|
num_images: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
) -> list[PIL.Image.Image]: |
|
if seed == -1: |
|
seed = np.random.randint(0, np.iinfo(np.int64).max) |
|
generator = torch.Generator().manual_seed(seed) |
|
return self.pipe(prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=num_images, |
|
num_inference_steps=num_steps, |
|
generator=generator, |
|
image=control_image).images |
|
|
|
@staticmethod |
|
def preprocess_canny( |
|
input_image: np.ndarray, |
|
image_resolution: int, |
|
low_threshold: int, |
|
high_threshold: int, |
|
) -> tuple[PIL.Image.Image, PIL.Image.Image]: |
|
image = resize_image(HWC3(input_image), image_resolution) |
|
control_image = apply_canny(image, low_threshold, high_threshold) |
|
control_image = HWC3(control_image) |
|
vis_control_image = 255 - control_image |
|
return PIL.Image.fromarray(control_image), PIL.Image.fromarray( |
|
vis_control_image) |
|
|
|
@torch.inference_mode() |
|
def process_canny( |
|
self, |
|
input_image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
low_threshold: int, |
|
high_threshold: int, |
|
) -> list[PIL.Image.Image]: |
|
control_image, vis_control_image = self.preprocess_canny( |
|
input_image=input_image, |
|
image_resolution=image_resolution, |
|
low_threshold=low_threshold, |
|
high_threshold=high_threshold, |
|
) |
|
self.load_controlnet_weight('canny') |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [vis_control_image] + results |
|
|
|
@staticmethod |
|
def preprocess_hough( |
|
input_image: np.ndarray, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
value_threshold: float, |
|
distance_threshold: float, |
|
) -> tuple[PIL.Image.Image, PIL.Image.Image]: |
|
input_image = HWC3(input_image) |
|
control_image = apply_mlsd( |
|
resize_image(input_image, detect_resolution), value_threshold, |
|
distance_threshold) |
|
control_image = HWC3(control_image) |
|
image = resize_image(input_image, image_resolution) |
|
H, W = image.shape[:2] |
|
control_image = cv2.resize(control_image, (W, H), |
|
interpolation=cv2.INTER_NEAREST) |
|
|
|
vis_control_image = 255 - cv2.dilate( |
|
control_image, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1) |
|
|
|
return PIL.Image.fromarray(control_image), PIL.Image.fromarray( |
|
vis_control_image) |
|
|
|
@torch.inference_mode() |
|
def process_hough( |
|
self, |
|
input_image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
value_threshold: float, |
|
distance_threshold: float, |
|
) -> list[PIL.Image.Image]: |
|
control_image, vis_control_image = self.preprocess_hough( |
|
input_image=input_image, |
|
image_resolution=image_resolution, |
|
detect_resolution=detect_resolution, |
|
value_threshold=value_threshold, |
|
distance_threshold=distance_threshold, |
|
) |
|
self.load_controlnet_weight('hough') |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [vis_control_image] + results |
|
|
|
@staticmethod |
|
def preprocess_hed( |
|
input_image: np.ndarray, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
) -> tuple[PIL.Image.Image, PIL.Image.Image]: |
|
input_image = HWC3(input_image) |
|
control_image = apply_hed(resize_image(input_image, detect_resolution)) |
|
control_image = HWC3(control_image) |
|
image = resize_image(input_image, image_resolution) |
|
H, W = image.shape[:2] |
|
control_image = cv2.resize(control_image, (W, H), |
|
interpolation=cv2.INTER_LINEAR) |
|
return PIL.Image.fromarray(control_image), PIL.Image.fromarray( |
|
control_image) |
|
|
|
@torch.inference_mode() |
|
def process_hed( |
|
self, |
|
input_image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
) -> list[PIL.Image.Image]: |
|
control_image, vis_control_image = self.preprocess_hed( |
|
input_image=input_image, |
|
image_resolution=image_resolution, |
|
detect_resolution=detect_resolution, |
|
) |
|
self.load_controlnet_weight('hed') |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [vis_control_image] + results |
|
|
|
@staticmethod |
|
def preprocess_scribble( |
|
input_image: np.ndarray, |
|
image_resolution: int, |
|
) -> tuple[PIL.Image.Image, PIL.Image.Image]: |
|
image = resize_image(HWC3(input_image), image_resolution) |
|
control_image = np.zeros_like(image, dtype=np.uint8) |
|
control_image[np.min(image, axis=2) < 127] = 255 |
|
vis_control_image = 255 - control_image |
|
return PIL.Image.fromarray(control_image), PIL.Image.fromarray( |
|
vis_control_image) |
|
|
|
@torch.inference_mode() |
|
def process_scribble( |
|
self, |
|
input_image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
) -> list[PIL.Image.Image]: |
|
control_image, vis_control_image = self.preprocess_scribble( |
|
input_image=input_image, |
|
image_resolution=image_resolution, |
|
) |
|
self.load_controlnet_weight('scribble') |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [vis_control_image] + results |
|
|
|
@staticmethod |
|
def preprocess_scribble_interactive( |
|
input_image: np.ndarray, |
|
image_resolution: int, |
|
) -> tuple[PIL.Image.Image, PIL.Image.Image]: |
|
image = resize_image(HWC3(input_image['mask'][:, :, 0]), |
|
image_resolution) |
|
control_image = np.zeros_like(image, dtype=np.uint8) |
|
control_image[np.min(image, axis=2) > 127] = 255 |
|
vis_control_image = 255 - control_image |
|
return PIL.Image.fromarray(control_image), PIL.Image.fromarray( |
|
vis_control_image) |
|
|
|
@torch.inference_mode() |
|
def process_scribble_interactive( |
|
self, |
|
input_image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
) -> list[PIL.Image.Image]: |
|
control_image, vis_control_image = self.preprocess_scribble_interactive( |
|
input_image=input_image, |
|
image_resolution=image_resolution, |
|
) |
|
self.load_controlnet_weight('scribble') |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [vis_control_image] + results |
|
|
|
@staticmethod |
|
def preprocess_fake_scribble( |
|
input_image: np.ndarray, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
) -> tuple[PIL.Image.Image, PIL.Image.Image]: |
|
input_image = HWC3(input_image) |
|
control_image = apply_hed(resize_image(input_image, detect_resolution)) |
|
control_image = HWC3(control_image) |
|
image = resize_image(input_image, image_resolution) |
|
H, W = image.shape[:2] |
|
|
|
control_image = cv2.resize(control_image, (W, H), |
|
interpolation=cv2.INTER_LINEAR) |
|
control_image = nms(control_image, 127, 3.0) |
|
control_image = cv2.GaussianBlur(control_image, (0, 0), 3.0) |
|
control_image[control_image > 4] = 255 |
|
control_image[control_image < 255] = 0 |
|
|
|
vis_control_image = 255 - control_image |
|
|
|
return PIL.Image.fromarray(control_image), PIL.Image.fromarray( |
|
vis_control_image) |
|
|
|
@torch.inference_mode() |
|
def process_fake_scribble( |
|
self, |
|
input_image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
) -> list[PIL.Image.Image]: |
|
control_image, vis_control_image = self.preprocess_fake_scribble( |
|
input_image=input_image, |
|
image_resolution=image_resolution, |
|
detect_resolution=detect_resolution, |
|
) |
|
self.load_controlnet_weight('scribble') |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [vis_control_image] + results |
|
|
|
@staticmethod |
|
def preprocess_pose( |
|
input_image: np.ndarray, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
is_pose_image: bool, |
|
) -> tuple[PIL.Image.Image, PIL.Image.Image]: |
|
input_image = HWC3(input_image) |
|
if not is_pose_image: |
|
control_image, _ = apply_openpose( |
|
resize_image(input_image, detect_resolution)) |
|
control_image = HWC3(control_image) |
|
image = resize_image(input_image, image_resolution) |
|
H, W = image.shape[:2] |
|
control_image = cv2.resize(control_image, (W, H), |
|
interpolation=cv2.INTER_NEAREST) |
|
else: |
|
control_image = resize_image(input_image, image_resolution) |
|
|
|
return PIL.Image.fromarray(control_image), PIL.Image.fromarray( |
|
control_image) |
|
|
|
@torch.inference_mode() |
|
def process_pose( |
|
self, |
|
input_image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
is_pose_image: bool, |
|
) -> list[PIL.Image.Image]: |
|
control_image, vis_control_image = self.preprocess_pose( |
|
input_image=input_image, |
|
image_resolution=image_resolution, |
|
detect_resolution=detect_resolution, |
|
is_pose_image=is_pose_image, |
|
) |
|
self.load_controlnet_weight('pose') |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [vis_control_image] + results |
|
|
|
@staticmethod |
|
def preprocess_seg( |
|
input_image: np.ndarray, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
is_segmentation_map: bool, |
|
) -> tuple[PIL.Image.Image, PIL.Image.Image]: |
|
input_image = HWC3(input_image) |
|
if not is_segmentation_map: |
|
control_image = apply_uniformer( |
|
resize_image(input_image, detect_resolution)) |
|
image = resize_image(input_image, image_resolution) |
|
H, W = image.shape[:2] |
|
control_image = cv2.resize(control_image, (W, H), |
|
interpolation=cv2.INTER_NEAREST) |
|
else: |
|
control_image = resize_image(input_image, image_resolution) |
|
return PIL.Image.fromarray(control_image), PIL.Image.fromarray( |
|
control_image) |
|
|
|
@torch.inference_mode() |
|
def process_seg( |
|
self, |
|
input_image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
is_segmentation_map: bool, |
|
) -> list[PIL.Image.Image]: |
|
control_image, vis_control_image = self.preprocess_seg( |
|
input_image=input_image, |
|
image_resolution=image_resolution, |
|
detect_resolution=detect_resolution, |
|
is_segmentation_map=is_segmentation_map, |
|
) |
|
self.load_controlnet_weight('seg') |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [vis_control_image] + results |
|
|
|
@staticmethod |
|
def preprocess_depth( |
|
input_image: np.ndarray, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
is_depth_image: bool, |
|
) -> tuple[PIL.Image.Image, PIL.Image.Image]: |
|
input_image = HWC3(input_image) |
|
if not is_depth_image: |
|
control_image, _ = apply_midas( |
|
resize_image(input_image, detect_resolution)) |
|
control_image = HWC3(control_image) |
|
image = resize_image(input_image, image_resolution) |
|
H, W = image.shape[:2] |
|
control_image = cv2.resize(control_image, (W, H), |
|
interpolation=cv2.INTER_LINEAR) |
|
else: |
|
control_image = resize_image(input_image, image_resolution) |
|
return PIL.Image.fromarray(control_image), PIL.Image.fromarray( |
|
control_image) |
|
|
|
@torch.inference_mode() |
|
def process_depth( |
|
self, |
|
input_image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
is_depth_image: bool, |
|
) -> list[PIL.Image.Image]: |
|
control_image, vis_control_image = self.preprocess_depth( |
|
input_image=input_image, |
|
image_resolution=image_resolution, |
|
detect_resolution=detect_resolution, |
|
is_depth_image=is_depth_image, |
|
) |
|
self.load_controlnet_weight('depth') |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [vis_control_image] + results |
|
|
|
@staticmethod |
|
def preprocess_normal( |
|
input_image: np.ndarray, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
bg_threshold: float, |
|
is_normal_image: bool, |
|
) -> tuple[PIL.Image.Image, PIL.Image.Image]: |
|
input_image = HWC3(input_image) |
|
if not is_normal_image: |
|
_, control_image = apply_midas(resize_image( |
|
input_image, detect_resolution), |
|
bg_th=bg_threshold) |
|
control_image = HWC3(control_image) |
|
image = resize_image(input_image, image_resolution) |
|
H, W = image.shape[:2] |
|
control_image = cv2.resize(control_image, (W, H), |
|
interpolation=cv2.INTER_LINEAR) |
|
else: |
|
control_image = resize_image(input_image, image_resolution) |
|
return PIL.Image.fromarray(control_image), PIL.Image.fromarray( |
|
control_image) |
|
|
|
@torch.inference_mode() |
|
def process_normal( |
|
self, |
|
input_image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
detect_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
bg_threshold: float, |
|
is_normal_image: bool, |
|
) -> list[PIL.Image.Image]: |
|
control_image, vis_control_image = self.preprocess_normal( |
|
input_image=input_image, |
|
image_resolution=image_resolution, |
|
detect_resolution=detect_resolution, |
|
bg_threshold=bg_threshold, |
|
is_normal_image=is_normal_image, |
|
) |
|
self.load_controlnet_weight('normal') |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [vis_control_image] + results |
|
|