ScrapeApp / app.py
halimbahae's picture
Update app.py
47a38f9 verified
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
# Page config
st.set_page_config(
page_title="Zephyr Chat",
page_icon="πŸ€–",
layout="wide"
)
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
# Load model and tokenizer
@st.cache_resource
def load_model():
model_name = "HuggingFaceH4/zephyr-7b-beta"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return model, tokenizer
# Main chat interface
st.title("Zephyr Chatbot πŸ€–")
try:
model, tokenizer = load_model()
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("What's on your mind?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Generate response
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
# Prepare input
input_text = f"User: {prompt}\nAssistant:"
inputs = tokenizer(input_text, return_tensors="pt")
# Generate response
outputs = model.generate(
inputs.input_ids,
max_length=200,
num_return_sequences=1,
temperature=0.7,
pad_token_id=tokenizer.eos_token_id
)
# Decode and display response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("Assistant:")[-1].strip()
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
except Exception as e:
st.error(f"Error: {str(e)}")
st.info("Note: This app requires significant computational resources. Consider using a smaller model or upgrading your Space's resources.")