import openai from transformers import MBartForConditionalGeneration, MBart50Tokenizer import gradio as gr import requests import io from PIL import Image import os import time # Importing time to add delays for sequential execution # Set up your OpenAI API key (make sure it's stored as an environment variable) openai_api_key = os.getenv("OPENAI_API_KEY") if openai_api_key is None: raise ValueError("OpenAI API key not found! Please set 'OPENAI_API_KEY' environment variable.") else: openai.api_key = openai_api_key # Load the translation model and tokenizer model_name = "facebook/mbart-large-50-many-to-one-mmt" tokenizer = MBart50Tokenizer.from_pretrained(model_name) model = MBartForConditionalGeneration.from_pretrained(model_name) # Use the Hugging Face API key from environment variables for text-to-image model hf_api_key = os.getenv("full_token") if hf_api_key is None: raise ValueError("Hugging Face API key not found! Please set 'hf_token' environment variable.") else: headers = {"Authorization": f"Bearer {hf_api_key}"} API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image" # Define the OpenAI GPT-3 text generation function with error handling def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7): try: print("Generating text with GPT-3...") response = openai.Completion.create( engine="text-davinci-003", # Use "text-davinci-003" for high-quality outputs prompt=prompt, max_tokens=max_tokens, temperature=temperature, top_p=0.9, frequency_penalty=0.0, presence_penalty=0.0 ) generated_text = response.choices[0].text.strip() print("Text generation completed.") return generated_text except Exception as e: print(f"OpenAI API Error: {e}") return "Error generating text with GPT-3. Check the OpenAI API settings." # Define the translation, GPT-3 text generation, and image generation function def translate_and_generate_image(tamil_text): # Step 1: Translate Tamil text to English using mbart-large-50 try: print("Translating Tamil text to English...") tokenizer.src_lang = "ta_IN" inputs = tokenizer(tamil_text, return_tensors="pt") translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] print(f"Translation completed: {translated_text}") except Exception as e: return "Error during translation: " + str(e), "", None # Ensure sequential flow by waiting before moving to the next step time.sleep(1) # Optional: Add a small delay to ensure proper execution order # Step 2: Generate high-quality descriptive text using OpenAI's GPT-3 try: print("Generating descriptive text from translated English text...") prompt = f"Create a detailed and creative description based on the following text: {translated_text}" generated_text = generate_with_gpt3(prompt, max_tokens=150, temperature=0.7) print(f"Text generation completed: {generated_text}") except Exception as e: return translated_text, f"Error during text generation: {e}", None # Ensure sequential flow by waiting before moving to the next step time.sleep(1) # Optional: Add a small delay to ensure proper execution order # Step 3: Use the generated English text to create an image try: print("Generating image from the generated descriptive text...") def query(payload): response = requests.post(API_URL, headers=headers, json=payload) response.raise_for_status() # Raise error if request fails return response.content # Generate image using the descriptive text image_bytes = query({"inputs": generated_text}) image = Image.open(io.BytesIO(image_bytes)) print("Image generation completed.") except Exception as e: return translated_text, generated_text, f"Error during image generation: {e}" return translated_text, generated_text, image # Gradio interface setup iface = gr.Interface( fn=translate_and_generate_image, inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."), outputs=[gr.Textbox(label="Translated English Text"), gr.Textbox(label="Generated Descriptive Text"), gr.Image(label="Generated Image")], title="Tamil to English Translation, GPT-3 Text Generation, and Image Creation", description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate high-quality text using GPT-3, and create an image using the generated text.", ) # Launch Gradio app without `share=True` iface.launch()