|
import openai |
|
from transformers import MBartForConditionalGeneration, MBart50Tokenizer |
|
import gradio as gr |
|
import requests |
|
import io |
|
from PIL import Image |
|
import os |
|
import time |
|
|
|
|
|
openai_api_key = os.getenv("OPENAI_API_KEY") |
|
if openai_api_key is None: |
|
raise ValueError("OpenAI API key not found! Please set 'OPENAI_API_KEY' environment variable.") |
|
else: |
|
openai.api_key = openai_api_key |
|
|
|
|
|
model_name = "facebook/mbart-large-50-many-to-one-mmt" |
|
tokenizer = MBart50Tokenizer.from_pretrained(model_name) |
|
model = MBartForConditionalGeneration.from_pretrained(model_name) |
|
|
|
|
|
hf_api_key = os.getenv("full_token") |
|
if hf_api_key is None: |
|
raise ValueError("Hugging Face API key not found! Please set 'hf_token' environment variable.") |
|
else: |
|
headers = {"Authorization": f"Bearer {hf_api_key}"} |
|
|
|
API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image" |
|
|
|
|
|
def generate_with_gpt3(prompt, max_tokens=150, temperature=0.7): |
|
try: |
|
print("Generating text with GPT-3...") |
|
response = openai.Completion.create( |
|
engine="text-davinci-003", |
|
prompt=prompt, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=0.9, |
|
frequency_penalty=0.0, |
|
presence_penalty=0.0 |
|
) |
|
generated_text = response.choices[0].text.strip() |
|
print("Text generation completed.") |
|
return generated_text |
|
except Exception as e: |
|
print(f"OpenAI API Error: {e}") |
|
return "Error generating text with GPT-3. Check the OpenAI API settings." |
|
|
|
|
|
def translate_and_generate_image(tamil_text): |
|
|
|
try: |
|
print("Translating Tamil text to English...") |
|
tokenizer.src_lang = "ta_IN" |
|
inputs = tokenizer(tamil_text, return_tensors="pt") |
|
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) |
|
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] |
|
print(f"Translation completed: {translated_text}") |
|
except Exception as e: |
|
return "Error during translation: " + str(e), "", None |
|
|
|
|
|
time.sleep(1) |
|
|
|
|
|
try: |
|
print("Generating descriptive text from translated English text...") |
|
prompt = f"Create a detailed and creative description based on the following text: {translated_text}" |
|
generated_text = generate_with_gpt3(prompt, max_tokens=150, temperature=0.7) |
|
print(f"Text generation completed: {generated_text}") |
|
except Exception as e: |
|
return translated_text, f"Error during text generation: {e}", None |
|
|
|
|
|
time.sleep(1) |
|
|
|
|
|
try: |
|
print("Generating image from the generated descriptive text...") |
|
def query(payload): |
|
response = requests.post(API_URL, headers=headers, json=payload) |
|
response.raise_for_status() |
|
return response.content |
|
|
|
|
|
image_bytes = query({"inputs": generated_text}) |
|
image = Image.open(io.BytesIO(image_bytes)) |
|
print("Image generation completed.") |
|
except Exception as e: |
|
return translated_text, generated_text, f"Error during image generation: {e}" |
|
|
|
return translated_text, generated_text, image |
|
|
|
|
|
iface = gr.Interface( |
|
fn=translate_and_generate_image, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."), |
|
outputs=[gr.Textbox(label="Translated English Text"), |
|
gr.Textbox(label="Generated Descriptive Text"), |
|
gr.Image(label="Generated Image")], |
|
title="Tamil to English Translation, GPT-3 Text Generation, and Image Creation", |
|
description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate high-quality text using GPT-3, and create an image using the generated text.", |
|
) |
|
|
|
|
|
iface.launch() |
|
|