File size: 1,961 Bytes
90fe5b0 bed5a04 90fe5b0 370c89f 90fe5b0 bed5a04 90fe5b0 bed5a04 90fe5b0 ddad67b bed5a04 90fe5b0 bed5a04 ddad67b 90fe5b0 bed5a04 90fe5b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio as gr
import timm
import torch
import pandas as pd
TITLE = "wd-eva02-large-tagger-v3-vector"
DESCRIPTION = """
モデル:[SmilingWolf/wd-eva02-large-tagger-v3](https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3)
日本語訳?:[p1atdev/danbooru-ja-tag-pair-20241015](https://huggingface.co/datasets/p1atdev/danbooru-ja-tag-pair-20241015)
"""
model = timm.create_model(f"hf_hub:SmilingWolf/wd-eva02-large-tagger-v3", pretrained=True)
head = model.head.weight.data
del model
df = pd.read_csv(f"https://huggingface.co/SmilingWolf/wd-eva02-large-tagger-v3/resolve/main/selected_tags.csv")
id2label = df["name"].to_dict()
label2id = {v:k for k,v in id2label.items()}
general_tags = df[df["category"] == 0].index
character_tags = df[df["category"] == 4].index
all_tags = df.index
tag_pair_df = pd.read_parquet("hf://datasets/p1atdev/danbooru-ja-tag-pair-20241015/data/train-00000-of-00001.parquet")
tag_pair = {title:other_names[0] for title, other_names in zip(tag_pair_df["title"], tag_pair_df["other_names"])}
for tag in df["name"]:
if tag not in tag_pair:
tag_pair[tag] = ""
def predict(target_tags, search_in):
target_tags = [tag.strip().replace(" ", "_") for tag in target_tags.split(",")]
target_ids = [label2id[tag] for tag in target_tags]
query = head[target_ids].unsqueeze(1)
sim = torch.cosine_similarity(query, head.unsqueeze(0), dim=2).mean(dim=0)
tags = general_tags if search_in == "general" else character_tags if search_in == "character" else all_tags
return {f"{id2label[i]}({tag_pair[id2label[i]]})": sim[i].item() for i in tags}
demo = gr.Interface(
fn=predict,
inputs=[
gr.Text(value="pink hair, braid", label="Target tags"),
gr.Dropdown(["all", "general", "character"], label="Search in", value="all")
],
outputs=gr.Label(num_top_classes=50),
title=TITLE,
description=DESCRIPTION
)
demo.launch() |