fa0311's picture
Update app.py
c025c60 verified
import cv2
import gradio as gr
from huggingface_hub import hf_hub_download
from vision.ssd.mobilenet_v2_ssd_lite import (
create_mobilenetv2_ssd_lite,
create_mobilenetv2_ssd_lite_predictor,
)
MODEL_REPO = "fa0311/oita-ken-strawberries-mobilenet"
MODEL_FILENAME = "20250129_053504/mb2-ssd-lite-Epoch-55-Loss-1.508891262114048.pth"
LABELS_FILENAME = "20250129_053504/labels.txt"
model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILENAME)
label_path = hf_hub_download(repo_id=MODEL_REPO, filename=LABELS_FILENAME)
with open(label_path, "r") as f:
class_names = [name.strip() for name in f.readlines()]
net = create_mobilenetv2_ssd_lite(len(class_names), is_test=True)
net.load(model_path)
predictor = create_mobilenetv2_ssd_lite_predictor(net, candidate_size=200)
def detect_objects(image, threshold):
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
boxes, labels, probs = predictor.predict(image, 10, threshold)
for i in range(boxes.size(0)):
box = list(map(int, boxes[i, :]))
cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 4)
label = f"{class_names[labels[i]]}: {probs[i]:.2f}"
cv2.putText(
image,
label,
(box[0] + 10, box[1] + 25),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(255, 0, 255),
2,
)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
iface = gr.Interface(
fn=detect_objects,
inputs=[
gr.Image(type="numpy"),
gr.Slider(0.1, 1.0, value=0.7, label="Detection Threshold"),
],
outputs=gr.Image(type="numpy"),
title="SSD Object Detection - Strawberry quality classification",
description="Upload an image of strawberries to detect objects using MobileNetV2-SSD-Lite.",
)
if __name__ == "__main__":
iface.launch()