File size: 7,782 Bytes
dae990d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
from langchain import OpenAI, LLMChain, PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from prompts import VANILLA_PROMPT
import os
import gradio as gr
class Chatbot():
def __init__(
self,
):
self.models = ['gpt3', 'gpt4']
# vectorstore
self.vectorstore = Chroma(persist_directory='./chroma', embedding_function=OpenAIEmbeddings())
self.vectordbkwargs = {"search_distance": 0.9, 'k' : 4}
self.modules = list(set([d['module'] for d in self.vectorstore._collection.get(include=['metadatas'])['metadatas']]))
print(f"Found modules: {self.modules}")
""" Initialise bots """
def _get_llm(self, model):
assert model in self.models
if model == 'gpt3':
return OpenAI()
if model == 'gpt4':
return ChatOpenAI(model='gpt-4')
def _initialise_augmented_chatbot(self, model):
#doc_chain = load_qa_with_sources_chain(self._get_llm(model), chain_type="map_reduce")
#question_generator = LLMChain(llm=self._get_llm(model), prompt=CONDENSE_QUESTION_PROMPT)
chain = ConversationalRetrievalChain.from_llm(
self._get_llm(model),
retriever=self.vectorstore.as_retriever(),
#combine_docs_chain=doc_chain,
#question_generator=question_generator,
return_source_documents=True
)
return chain
def _initialise_vanilla_chatbot(self, model):
# vanilla gpt
template = VANILLA_PROMPT
prompt = PromptTemplate(template=template, input_variables=["human_input", "history"])
chain = LLMChain(llm=self._get_llm(model), prompt=prompt)
return chain
""" Format """
def _format_chat_history(self, history):
res = []
for human, ai in history:
res.append(f"Human:{human}\nAI:{ai}")
return "\n".join(res)
def _format_search_source_documents(self, documents):
# add page if none
for d in documents:
try:
d.metadata['page']
except:
d.metadata['page'] = ''
output = ' '.join([
f'SOURCE {i}\n' + d.page_content + '\n\nSource: ' + d.metadata['source'] + '\nPage: ' + str(d.metadata['page']) + '\n\n\n'
for i, d in enumerate(documents)
])
return output
def _format_chat_source_docments(self, documents):
# add page if none
for d in documents:
try:
d.metadata['page']
except:
d.metadata['page'] = 0
# get unique sources
unique_sources = list(set([d.metadata['source'] for d in documents]))
# get unique pages for each source
unique_dict = {s : list(set([d.metadata['page'] for d in documents if d.metadata['source'] == s])) for s in unique_sources}
output = '\n'.join([
f"{k}, pages: " + ', '.join([str(i) for i in v])
for k, v in unique_dict.items()
])
return '\n\n' + 'SOURCES:\n' + output
""" Main Functions """
def search(
self,
inp,
history,
module,
):
history = history or []
output_raw = self.vectorstore.similarity_search(inp, filter=dict(module=module), k=4)
output = self._format_search_source_documents(output_raw)
history.append((inp, output))
return history, history
def chat(
self,
inp: str,
history,
module,
model,
):
"""Method for integration with gradio Chatbot"""
if model == None:
model = 'gpt4'
history = history or []
chain = self._initialise_augmented_chatbot(model=model)
output_raw = chain(
{
"question": inp,
"chat_history": history,
"vectordbkwargs":
self.vectordbkwargs | {"filter" : {"module" : module}}
}
)
output = output_raw["answer"] + self._format_chat_source_docments(output_raw["source_documents"])
history.append((inp, output))
return history, history#, ""
def chat_vanilla(
self,
inp: str,
history,
model,
):
""" Vanilla GPT 4"""
if model == None:
model = 'gpt4'
history = history or []
chain = self._initialise_vanilla_chatbot(model=model)
history_formatted = self._format_chat_history(history)
output = chain({"human_input": inp, "history": history_formatted})['text']
history.append((inp, output))
return history, history
""" Interface """
def launch_app(self):
block = gr.Blocks(css=".gradio-container {background-color: lightgray}")
with block:
with gr.Row():
gr.Markdown("<h3><center>y2clutch</center></h3>")
with gr.Tab("Augmented GPT"):
with gr.Row():
chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(
lines=1,
)
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
state = gr.State()
module = gr.Dropdown(self.modules, label="Select a module *Required*")
model = gr.Dropdown(self.models, label="Select a model *Required*")
submit.click(self.chat, inputs=[message, state, module, model], outputs=[chatbot, state])
message.submit(self.chat, inputs=[message, state, module, model], outputs=[chatbot, state])
with gr.Tab("Search"):
with gr.Row():
search = gr.Chatbot()
with gr.Row():
message = gr.Textbox(
lines=1,
)
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
search_state = gr.State()
module = gr.Dropdown(self.modules, label="Select a module *Required*")
submit.click(self.search, inputs=[message, search_state, module], outputs=[search, search_state])
message.submit(self.search, inputs=[message, search_state, module], outputs=[search, search_state])
with gr.Tab("Vanilla GPT"):
with gr.Row():
vanilla_chatbot = gr.Chatbot()
with gr.Row():
message = gr.Textbox(
lines=1,
)
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
vanilla_state = gr.State()
model = gr.Dropdown(self.models, label="Select a model *Required*")
submit.click(self.chat_vanilla, inputs=[message, vanilla_state, model], outputs=[vanilla_chatbot, vanilla_state])
message.submit(self.chat_vanilla, inputs=[message, vanilla_state, model], outputs=[vanilla_chatbot, vanilla_state])
block.launch(debug=True, share=False)
if __name__ == '__main__':
Chatbot().launch_app() |