import gradio as gr from transformers import pipeline import torch device = "cuda:0" if torch.cuda.is_available() else "cpu" def transcribe(audio): pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-small", chunk_length_s=30, device=device, ) # ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # sample = ds[0]["audio"] # prediction = pipe(sample.copy(), batch_size=8)["text"] prediction = pipe(audio)["text"] print(prediction) return prediction gradio_app = gr.Interface( fn=transcribe, inputs=gr.Audio(type="filepath"), outputs=gr.Textbox(label="Result"), title="Transcribed", ) if __name__ == "__main__": gradio_app.launch(share=True)