Spaces:
Sleeping
Sleeping
Commit
·
084ab49
1
Parent(s):
05d21c5
Update app.py
Browse files
app.py
CHANGED
@@ -1,106 +1,106 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import torch
|
3 |
-
import transformers
|
4 |
-
from transformers import pipeline
|
5 |
-
from transformers import LlamaTokenizer, LlamaForCausalLM
|
6 |
-
import time
|
7 |
-
import csv
|
8 |
-
import locale
|
9 |
-
locale.getpreferredencoding = lambda: "UTF-8"
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
-
-
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
-
#https://huggingface.co/shibing624/chinese-alpaca-plus-7b-hf
|
20 |
-
#https://huggingface.co/ziqingyang/chinese-alpaca-2-7b
|
21 |
-
#https://huggingface.co/minlik/chinese-alpaca-plus-7b-merged
|
22 |
|
23 |
-
def generate_prompt(text):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
|
29 |
|
30 |
-
tokenizer = LlamaTokenizer.from_pretrained('shibing624/chinese-alpaca-plus-7b-hf')
|
31 |
-
pipeline = pipeline(
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
|
38 |
-
st.title("Chinese text generation alpaca2")
|
39 |
-
st.write("Enter a sentence and alpaca2 will answer:")
|
40 |
|
41 |
-
user_input = st.text_input("")
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
-
with open('alpaca_output.csv', 'a', newline='',encoding = "utf-8") as csvfile:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import torch
|
3 |
+
# import transformers
|
4 |
+
# from transformers import pipeline
|
5 |
+
# from transformers import LlamaTokenizer, LlamaForCausalLM
|
6 |
+
# import time
|
7 |
+
# import csv
|
8 |
+
# import locale
|
9 |
+
# locale.getpreferredencoding = lambda: "UTF-8"
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
+
# -
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
+
# #https://huggingface.co/shibing624/chinese-alpaca-plus-7b-hf
|
20 |
+
# #https://huggingface.co/ziqingyang/chinese-alpaca-2-7b
|
21 |
+
# #https://huggingface.co/minlik/chinese-alpaca-plus-7b-merged
|
22 |
|
23 |
+
# def generate_prompt(text):
|
24 |
+
# return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
25 |
+
# ### Instruction:
|
26 |
+
# {text}
|
27 |
|
28 |
+
# ### Response:"""
|
29 |
|
30 |
+
# tokenizer = LlamaTokenizer.from_pretrained('shibing624/chinese-alpaca-plus-7b-hf')
|
31 |
+
# pipeline = pipeline(
|
32 |
+
# "text-generation",
|
33 |
+
# model="shibing624/chinese-alpaca-plus-7b-hf",
|
34 |
+
# torch_dtype=torch.float32,
|
35 |
+
# device_map="auto",
|
36 |
+
# )
|
37 |
|
38 |
+
# st.title("Chinese text generation alpaca2")
|
39 |
+
# st.write("Enter a sentence and alpaca2 will answer:")
|
40 |
|
41 |
+
# user_input = st.text_input("")
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
+
# with open('alpaca_output.csv', 'a', newline='',encoding = "utf-8") as csvfile:
|
47 |
+
# writer = csv.writer(csvfile)
|
48 |
+
# # writer.writerow(["stockname",'prompt','answer','time'])
|
49 |
+
# if user_input:
|
50 |
+
# if user_input[0] == ".":
|
51 |
+
# stockname = user_input[1:4]
|
52 |
+
# analysis = user_input[4:]
|
53 |
|
54 |
+
# text = f"""請以肯定和專業的語氣,一步一步的思考並回答以下關於{stockname}的問題,避免空洞的答覆:
|
55 |
+
# - 請回答關於{stockname}的問題,請總結給予的資料以及資料解釋,並整合出金融上的洞見。\n
|
56 |
+
# - 請不要生成任何資料沒有提供的數據,即便你已知道。\n
|
57 |
+
# - 請假裝這些資料都是你預先知道的知識。因此,請不要提到「根據資料」、「基於上述資料」等回答
|
58 |
+
# - 請不要說「好的、我明白了、根據我的要求、以下是我的答案」等贅詞,請輸出分析結果即可\n
|
59 |
+
# - 請寫300字到500字之間,若合適,可以進行分類、列點
|
60 |
+
# 資料:{stockname}{analysis}
|
61 |
|
62 |
+
# 請特別注意,分析結果包含籌碼面、基本面以及技術面,請針對這三個面向進行回答,並且特別注意個別符合幾項和不符合幾項。籌碼面、技術面和基本面滿分十分,總計滿分為30分。
|
63 |
+
# 三個面向中,符合5項以上代表該面項表現好,反之是該面項表現差。
|
64 |
+
# """
|
65 |
|
66 |
+
# prompt = generate_prompt(text)
|
67 |
+
# start = time.time()
|
68 |
+
# sequences = pipeline(
|
69 |
+
# prompt,
|
70 |
+
# do_sample=True,
|
71 |
+
# top_k=40,
|
72 |
+
# num_return_sequences=1,
|
73 |
+
# eos_token_id=tokenizer.eos_token_id,
|
74 |
+
# max_length=200,
|
75 |
+
# )
|
76 |
+
# end = time.time()
|
77 |
+
# for seq in sequences:
|
78 |
+
# st.write(f"Result: {seq}") #seq['generated_text']
|
79 |
+
# st.write(f"time: {(end-start):.2f}")
|
80 |
+
# writer.writerow([stockname,text,sequences,f"time: {(end-start):.2f}"])
|
81 |
|
82 |
+
# # input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda')
|
83 |
+
# # with torch.no_grad():
|
84 |
+
# # output_ids = model.generate(
|
85 |
+
# # input_ids=input_ids,
|
86 |
+
# # max_new_tokens=2048,
|
87 |
+
# # top_k=40,
|
88 |
|
89 |
+
# # ).cuda()
|
90 |
+
# # output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
91 |
+
# else:
|
92 |
+
# prompt = generate_prompt(user_input)
|
93 |
+
# start = time.time()
|
94 |
+
# sequences = pipeline(
|
95 |
+
# prompt,
|
96 |
+
# do_sample=True,
|
97 |
+
# top_k=40,
|
98 |
+
# num_return_sequences=1,
|
99 |
+
# eos_token_id=tokenizer.eos_token_id,
|
100 |
+
# max_length=200,
|
101 |
+
# )
|
102 |
+
# end = time.time()
|
103 |
+
# for seq in sequences:
|
104 |
+
# st.write(f"Result: {seq}") #seq['generated_text']
|
105 |
+
# st.write(f"time: {(end-start):.2f}")
|
106 |
+
# writer.writerow(["無",user_input,sequences,f"time: {(end-start):.2f}"])
|