Spaces:
Sleeping
Sleeping
File size: 14,514 Bytes
4732c3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# import os
# import streamlit as st
# import google.generativeai as genai
# from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
# from langchain_community.document_loaders import Docx2txtLoader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain_community.vectorstores import Chroma
# from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
# from langchain_core.messages import HumanMessage, SystemMessage
# from langchain.chains import create_history_aware_retriever, create_retrieval_chain
# from langchain.chains.combine_documents import create_stuff_documents_chain
# from langchain.embeddings import HuggingFaceEmbeddings
# from bert_score import score
# from sklearn.metrics import f1_score
# import pysqlite3
# import sys
# sys.modules['sqlite3'] = pysqlite3
# # Retrieve Google API Key
# GOOGLE_API_KEY = "AIzaSyAytkzRS0Xp0pCyo6WqKJ4m1o330bF-gPk"
# if not GOOGLE_API_KEY:
# raise ValueError("Gemini API key not found. Please set it in the .env file.")
# os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
# # Streamlit configuration
# st.set_page_config(page_title="College Data Chatbot", layout="centered")
# st.title("PreCollege Chatbot GEMINI+ HuggingFace Embeddings")
# # Initialize LLM and embeddings
# llm = ChatGoogleGenerativeAI(
# model="gemini-1.5-pro-latest",
# temperature=0.2,
# max_tokens=None,
# timeout=None,
# max_retries=2,
# )
# embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
# # Load vector store
# def load_preprocessed_vectorstore():
# try:
# loader = Docx2txtLoader("./Updated_structred_aman.docx")
# documents = loader.load()
# text_splitter = RecursiveCharacterTextSplitter(
# separators=["\n\n", "\n", ". ", " ", ""],
# chunk_size=3000,
# chunk_overlap=1000
# )
# document_chunks = text_splitter.split_documents(documents)
# vector_store = Chroma.from_documents(
# embedding=embeddings,
# documents=document_chunks,
# persist_directory="./data32"
# )
# return vector_store
# except Exception as e:
# st.error(f"Error creating vector store: {e}")
# return None
# # Evaluation Metrics
# def calculate_recall_at_k(retrieved_docs, relevant_docs, k=5):
# retrieved_top_k = retrieved_docs[:k]
# relevant_in_top_k = len(set(retrieved_top_k).intersection(set(relevant_docs)))
# total_relevant = len(relevant_docs)
# return relevant_in_top_k / total_relevant if total_relevant > 0 else 0.0
# def calculate_bertscore(generated_responses, reference_responses):
# P, R, F1 = score(generated_responses, reference_responses, lang="en", rescale_with_baseline=True)
# return {"precision": P.mean().item(), "recall": R.mean().item(), "f1": F1.mean().item()}
# def calculate_f1_score(generated_response, relevant_text):
# generated_tokens = set(generated_response.split())
# relevant_tokens = set(relevant_text.split())
# intersection = generated_tokens.intersection(relevant_tokens)
# precision = len(intersection) / len(generated_tokens) if len(generated_tokens) > 0 else 0
# recall = len(intersection) / len(relevant_tokens) if len(relevant_tokens) > 0 else 0
# if precision + recall > 0:
# f1 = 2 * (precision * recall) / (precision + recall)
# else:
# f1 = 0.0
# return f1
# # Context Retriever Chain
# def get_context_retriever_chain(vector_store):
# retriever = vector_store.as_retriever()
# prompt = ChatPromptTemplate.from_messages([
# MessagesPlaceholder(variable_name="chat_history"),
# ("human", "{input}"),
# ("system", """Given a chat history and the latest user question,
# reformulate it as a standalone question without using chat history.
# Do NOT answer it, just reformulate.""")
# ])
# return create_history_aware_retriever(llm, retriever, prompt)
# def get_conversational_chain(retriever_chain):
# prompt = ChatPromptTemplate.from_messages([
# ("system", """Hello! I'm your PreCollege AI assistant. I'll guide you through your JEE Mains journey.
# To get started, share your JEE Mains rank and preferred engineering branches or colleges."""),
# MessagesPlaceholder(variable_name="chat_history"),
# ("human", "{input}")
# ])
# stuff_documents_chain = create_stuff_documents_chain(llm, prompt)
# return create_retrieval_chain(retriever_chain, stuff_documents_chain)
# def get_response(user_query):
# retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
# conversation_rag_chain = get_conversational_chain(retriever_chain)
# formatted_chat_history = []
# for message in st.session_state.chat_history:
# if isinstance(message, HumanMessage):
# formatted_chat_history.append({"author": "user", "content": message.content})
# elif isinstance(message, SystemMessage):
# formatted_chat_history.append({"author": "assistant", "content": message.content})
# response = conversation_rag_chain.invoke({
# "chat_history": formatted_chat_history,
# "input": user_query
# })
# return response['answer']
# # Initialize vector store and metrics
# st.session_state.vector_store = load_preprocessed_vectorstore()
# if "metrics" not in st.session_state:
# st.session_state.metrics = {"recall_at_5": [], "bert_scores": [], "f1_scores": []}
# # Initialize chat history
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = [
# {"author": "assistant", "content": "Hello, I am Precollege. How can I help you?"}
# ]
# # Main app logic
# if st.session_state.get("vector_store") is None:
# st.error("Failed to load preprocessed data. Ensure the data exists in './data' directory.")
# else:
# with st.container():
# for message in st.session_state.chat_history:
# if message["author"] == "assistant":
# with st.chat_message("system"):
# st.write(message["content"])
# elif message["author"] == "user":
# with st.chat_message("human"):
# st.write(message["content"])
# with st.container():
# with st.form(key="chat_form", clear_on_submit=True):
# user_query = st.text_input("Type your message here...", key="user_input")
# submit_button = st.form_submit_button("Send")
# if submit_button and user_query:
# # Get response
# response = get_response(user_query)
# st.session_state.chat_history.append({"author": "user", "content": user_query})
# st.session_state.chat_history.append({"author": "assistant", "content": response})
# # Dummy relevant docs for metrics demonstration
# retrieved_docs = ["doc1", "doc2", "doc3"] # Replace with actual IDs from retriever
# relevant_docs = ["doc1", "doc4"] # Replace with ground truth IDs
# recall_at_5 = calculate_recall_at_k(retrieved_docs, relevant_docs)
# st.session_state.metrics["recall_at_5"].append(recall_at_5)
# # Dummy reference and relevant text
# reference_response = "Gold-standard answer here."
# bert_scores = calculate_bertscore([response], [reference_response])
# st.session_state.metrics["bert_scores"].append(bert_scores["f1"])
# f1_score_value = calculate_f1_score(response, "Relevant text here")
# st.session_state.metrics["f1_scores"].append(f1_score_value)
# # Display evaluation metrics
# st.write("Evaluation Metrics:")
# st.write(f"Recall@5: {recall_at_5:.2f}")
# st.write(f"BERTScore F1: {bert_scores['f1']:.2f}")
# st.write(f"Faithfulness F1: {f1_score_value:.2f}")
# st.rerun()
import os
import streamlit as st
import google.generativeai as genai
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.document_loaders import Docx2txtLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage, SystemMessage
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.embeddings import HuggingFaceEmbeddings
import pysqlite3
import sys
sys.modules['sqlite3'] = pysqlite3
# Set the Google API key
GOOGLE_API_KEY = "AIzaSyCvkV4v4NPnPE2TcDGpIaJx56OIf_vUCnU"
if not GOOGLE_API_KEY:
raise ValueError("Gemini API key not found. Please set it in the .env file.")
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
# Streamlit app configuration
st.set_page_config(page_title="College Data Chatbot", layout="centered")
st.title("PreCollege Chatbot GEMINI+ HuggingFace Embeddings")
# Initialize the Google Gemini LLM
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro-latest",
temperature=0.2,
max_tokens=None,
timeout=None,
max_retries=2,
)
# Initialize embeddings using HuggingFace
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
def load_preprocessed_vectorstore():
"""Loads documents, splits them, and creates a Chroma vector store."""
try:
loader = Docx2txtLoader("./Updated_structred_aman.docx")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
separators=["\n\n", "\n", ". ", " ", ""],
chunk_size=3000,
chunk_overlap=1000
)
document_chunks = text_splitter.split_documents(documents)
vector_store = Chroma.from_documents(
embedding=embeddings,
documents=document_chunks,
persist_directory="./data32"
)
return vector_store
except Exception as e:
st.error(f"Error creating vector store: {e}")
return None
def get_context_retriever_chain(vector_store):
"""Creates a history-aware retriever chain."""
retriever = vector_store.as_retriever()
# Define the prompt for the retriever chain
prompt = ChatPromptTemplate.from_messages([
MessagesPlaceholder(variable_name="chat_history"),
("human", "{input}"),
("system", """Given the chat history, context, and the latest user question, formulate a standalone question
that can be understood without the chat history. Use the context to provide a relevant answer if possible.
If the question is beyond the scope of the context, return:
'This question is beyond the scope of the available information. Please contact your mentor for further assistance.'
""")
])
retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
return retriever_chain
def get_conversational_chain(retriever_chain):
"""Creates a conversational chain using the retriever chain."""
prompt = ChatPromptTemplate.from_messages([
("system", """Hello! I'm your PreCollege AI assistant, here to help you with your JEE Mains journey.
Please provide your JEE Mains rank and preferred engineering branches or colleges,
and I'll give you tailored advice based on our verified database.
Note: I will only provide information that is available within our database to ensure accuracy. Let's get started!
\n\n{context}"""),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{input}")
])
stuff_documents_chain = create_stuff_documents_chain(llm, prompt)
return create_retrieval_chain(retriever_chain, stuff_documents_chain)
def get_response(user_query):
"""Gets a response from the conversational RAG chain."""
retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
conversation_rag_chain = get_conversational_chain(retriever_chain)
formatted_chat_history = []
for message in st.session_state.chat_history:
if isinstance(message, HumanMessage):
formatted_chat_history.append({"author": "user", "content": message.content})
elif isinstance(message, SystemMessage):
formatted_chat_history.append({"author": "assistant", "content": message.content})
response = conversation_rag_chain.invoke({
"chat_history": formatted_chat_history,
"input": user_query
})
return response['answer']
# Load the preprocessed vector store from the local directory
if "vector_store" not in st.session_state:
st.session_state.vector_store = load_preprocessed_vectorstore()
# Initialize chat history if not present
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
# Main app logic
if st.session_state.vector_store is None:
st.error("Failed to load preprocessed data. Please ensure the data exists in './data32' directory.")
else:
# Display chat history
with st.container():
for message in st.session_state.chat_history:
if message.get("author") == "assistant":
with st.chat_message("assistant"):
st.write(message.get("content"))
elif message.get("author") == "user":
with st.chat_message("user"):
st.write(message.get("content"))
# Add user input box below the chat
if user_query := st.chat_input("Type your message here..."):
# Append user query to chat history
st.session_state.chat_history.append({"author": "user", "content": user_query})
# Get bot response
response = get_response(user_query)
# Append response to chat history
st.session_state.chat_history.append({"author": "assistant", "content": response})
# Display response
with st.chat_message("assistant"):
st.write(response)
|