Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,25 @@
|
|
1 |
-
import streamlit as st
|
2 |
import os
|
3 |
import subprocess
|
4 |
-
|
|
|
|
|
5 |
import black
|
6 |
from pylint import lint
|
7 |
from io import StringIO
|
8 |
-
import openai
|
9 |
import sys
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
PROJECT_ROOT = "projects"
|
15 |
AGENT_DIRECTORY = "agents"
|
16 |
|
@@ -23,165 +32,175 @@ if 'workspace_projects' not in st.session_state:
|
|
23 |
st.session_state.workspace_projects = {}
|
24 |
if 'available_agents' not in st.session_state:
|
25 |
st.session_state.available_agents = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
class AIAgent:
|
28 |
-
def __init__(self, name, description, skills):
|
29 |
self.name = name
|
30 |
self.description = description
|
31 |
self.skills = skills
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
Autonomous build logic that continues based on the state of chat history and workspace projects.
|
46 |
-
"""
|
47 |
-
# Example logic: Generate a summary of chat history and workspace state
|
48 |
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
49 |
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
50 |
|
51 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
def save_agent_to_file(agent):
|
57 |
-
"""Saves the agent's prompt to a file."""
|
58 |
-
if not os.path.exists(AGENT_DIRECTORY):
|
59 |
-
os.makedirs(AGENT_DIRECTORY)
|
60 |
-
file_path = os.path.join(AGENT_DIRECTORY, f"{agent.name}.txt")
|
61 |
-
with open(file_path, "w") as file:
|
62 |
-
file.write(agent.create_agent_prompt())
|
63 |
-
st.session_state.available_agents.append(agent.name)
|
64 |
-
|
65 |
-
def load_agent_prompt(agent_name):
|
66 |
-
"""Loads an agent prompt from a file."""
|
67 |
-
file_path = os.path.join(AGENT_DIRECTORY, f"{agent_name}.txt")
|
68 |
-
if os.path.exists(file_path):
|
69 |
-
with open(file_path, "r") as file:
|
70 |
-
agent_prompt = file.read()
|
71 |
-
return agent_prompt
|
72 |
-
else:
|
73 |
-
return None
|
74 |
-
|
75 |
-
def create_agent_from_text(name, text):
|
76 |
-
skills = text.split('\n')
|
77 |
-
agent = AIAgent(name, "AI agent created from text input.", skills)
|
78 |
-
save_agent_to_file(agent)
|
79 |
-
return agent.create_agent_prompt()
|
80 |
-
|
81 |
-
# Chat interface using a selected agent
|
82 |
-
def chat_interface_with_agent(input_text, agent_name):
|
83 |
-
agent_prompt = load_agent_prompt(agent_name)
|
84 |
-
if agent_prompt is None:
|
85 |
-
return f"Agent {agent_name} not found."
|
86 |
-
|
87 |
-
# Load the GPT-2 model which is compatible with AutoModelForCausalLM
|
88 |
-
model_name = "gpt2"
|
89 |
-
try:
|
90 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
91 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
92 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
93 |
-
except EnvironmentError as e:
|
94 |
-
return f"Error loading model: {e}"
|
95 |
-
|
96 |
-
# Combine the agent prompt with user input
|
97 |
-
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
|
98 |
-
|
99 |
-
# Truncate input text to avoid exceeding the model's maximum length
|
100 |
-
max_input_length = 900
|
101 |
-
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
|
102 |
-
if input_ids.shape[1] > max_input_length:
|
103 |
-
input_ids = input_ids[:, :max_input_length]
|
104 |
-
|
105 |
-
# Generate chatbot response
|
106 |
-
outputs = model.generate(
|
107 |
-
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True
|
108 |
-
)
|
109 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
110 |
-
return response
|
111 |
-
|
112 |
-
# Terminal interface
|
113 |
-
def terminal_interface(command, project_name=None):
|
114 |
-
if project_name:
|
115 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
#
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
response = openai.Completion.create(
|
149 |
-
engine="davinci-codex",
|
150 |
-
prompt=idea,
|
151 |
-
max_tokens=150
|
152 |
-
)
|
153 |
-
return response.choices[0].text.strip()
|
154 |
-
|
155 |
-
# Workspace interface
|
156 |
-
def workspace_interface(project_name):
|
157 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
158 |
-
if not os.path.exists(project_path):
|
159 |
-
os.makedirs(project_path)
|
160 |
-
st.session_state.workspace_projects[project_name] = {'files': []}
|
161 |
-
return f"Project '{project_name}' created successfully."
|
162 |
-
else:
|
163 |
-
return f"Project '{project_name}' already exists."
|
164 |
-
|
165 |
-
# Add code to workspace
|
166 |
-
def add_code_to_workspace(project_name, code, file_name):
|
167 |
-
project_path = os.path.join(PROJECT_ROOT, project_name)
|
168 |
-
if not os.path.exists(project_path):
|
169 |
-
return f"Project '{project_name}' does not exist."
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
#
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
# Streamlit App
|
187 |
st.title("AI Agent Creator")
|
@@ -190,6 +209,8 @@ st.title("AI Agent Creator")
|
|
190 |
st.sidebar.title("Navigation")
|
191 |
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
192 |
|
|
|
|
|
193 |
if app_mode == "AI Agent Creator":
|
194 |
# AI Agent Creator
|
195 |
st.header("Create an AI Agent from Text")
|
@@ -202,132 +223,17 @@ if app_mode == "AI Agent Creator":
|
|
202 |
st.success(f"Agent '{agent_name}' created and saved successfully.")
|
203 |
st.session_state.available_agents.append(agent_name)
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
#
|
210 |
-
st.
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
terminal_input = st.text_input("Enter a command:")
|
220 |
-
if st.button("Run"):
|
221 |
-
terminal_output = terminal_interface(terminal_input)
|
222 |
-
st.session_state.terminal_history.append((terminal_input, terminal_output))
|
223 |
-
st.code(terminal_output, language="bash")
|
224 |
-
|
225 |
-
# Code Editor Interface
|
226 |
-
st.subheader("Code Editor")
|
227 |
-
code_editor = st.text_area("Write your code:", height=300)
|
228 |
-
if st.button("Format & Lint"):
|
229 |
-
formatted_code, lint_message = code_editor_interface(code_editor)
|
230 |
-
st.code(formatted_code, language="python")
|
231 |
-
st.info(lint_message)
|
232 |
-
|
233 |
-
# Text Summarization Tool
|
234 |
-
st.subheader("Summarize Text")
|
235 |
-
text_to_summarize = st.text_area("Enter text to summarize:")
|
236 |
-
if st.button("Summarize"):
|
237 |
-
summary = summarize_text(text_to_summarize)
|
238 |
-
st.write(f"Summary: {summary}")
|
239 |
-
|
240 |
-
# Sentiment Analysis Tool
|
241 |
-
st.subheader("Sentiment Analysis")
|
242 |
-
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
243 |
-
if st.button("Analyze Sentiment"):
|
244 |
-
sentiment = sentiment_analysis(sentiment_text)
|
245 |
-
st.write(f"Sentiment: {sentiment}")
|
246 |
-
|
247 |
-
# Text Translation Tool (Code Translation)
|
248 |
-
st.subheader("Translate Code")
|
249 |
-
code_to_translate = st.text_area("Enter code to translate:")
|
250 |
-
source_language = st.text_input("Enter source language (e.g., 'Python'):")
|
251 |
-
target_language = st.text_input("Enter target language (e.g., 'JavaScript'):")
|
252 |
-
if st.button("Translate Code"):
|
253 |
-
translated_code = translate_code(code_to_translate, source_language, target_language)
|
254 |
-
st.code(translated_code, language=target_language.lower())
|
255 |
-
|
256 |
-
# Code Generation
|
257 |
-
st.subheader("Code Generation")
|
258 |
-
code_idea = st.text_input("Enter your code idea:")
|
259 |
-
if st.button("Generate Code"):
|
260 |
-
generated_code = generate_code(code_idea)
|
261 |
-
st.code(generated_code, language="python")
|
262 |
-
|
263 |
-
elif app_mode == "Workspace Chat App":
|
264 |
-
# Workspace Chat App
|
265 |
-
st.header("Workspace Chat App")
|
266 |
-
|
267 |
-
# Project Workspace Creation
|
268 |
-
st.subheader("Create a New Project")
|
269 |
-
project_name = st.text_input("Enter project name:")
|
270 |
-
if st.button("Create Project"):
|
271 |
-
workspace_status = workspace_interface(project_name)
|
272 |
-
st.success(workspace_status)
|
273 |
-
|
274 |
-
# Add Code to Workspace
|
275 |
-
st.subheader("Add Code to Workspace")
|
276 |
-
code_to_add = st.text_area("Enter code to add to workspace:")
|
277 |
-
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
|
278 |
-
if st.button("Add Code"):
|
279 |
-
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
|
280 |
-
st.success(add_code_status)
|
281 |
-
|
282 |
-
# Terminal Interface with Project Context
|
283 |
-
st.subheader("Terminal (Workspace Context)")
|
284 |
-
terminal_input = st.text_input("Enter a command within the workspace:")
|
285 |
-
if st.button("Run Command"):
|
286 |
-
terminal_output = terminal_interface(terminal_input, project_name)
|
287 |
-
st.code(terminal_output, language="bash")
|
288 |
-
|
289 |
-
# Chat Interface for Guidance
|
290 |
-
st.subheader("Chat with CodeCraft for Guidance")
|
291 |
-
chat_input = st.text_area("Enter your message for guidance:")
|
292 |
-
if st.button("Get Guidance"):
|
293 |
-
chat_response = chat_interface(chat_input)
|
294 |
-
st.session_state.chat_history.append((chat_input, chat_response))
|
295 |
-
st.write(f"CodeCraft: {chat_response}")
|
296 |
-
|
297 |
-
# Display Chat History
|
298 |
-
st.subheader("Chat History")
|
299 |
-
for user_input, response in st.session_state.chat_history:
|
300 |
-
st.write(f"User: {user_input}")
|
301 |
-
st.write(f"CodeCraft: {response}")
|
302 |
-
|
303 |
-
# Display Terminal History
|
304 |
-
st.subheader("Terminal History")
|
305 |
-
for command, output in st.session_state.terminal_history:
|
306 |
-
st.write(f"Command: {command}")
|
307 |
-
st.code(output, language="bash")
|
308 |
-
|
309 |
-
# Display Projects and Files
|
310 |
-
st.subheader("Workspace Projects")
|
311 |
-
for project, details in st.session_state.workspace_projects.items():
|
312 |
-
st.write(f"Project: {project}")
|
313 |
-
for file in details['files']:
|
314 |
-
st.write(f" - {file}")
|
315 |
-
|
316 |
-
# Chat with AI Agents
|
317 |
-
st.subheader("Chat with AI Agents")
|
318 |
-
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
|
319 |
-
agent_chat_input = st.text_area("Enter your message for the agent:")
|
320 |
-
if st.button("Send to Agent"):
|
321 |
-
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
|
322 |
-
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
|
323 |
-
st.write(f"{selected_agent}: {agent_chat_response}")
|
324 |
-
|
325 |
-
# Automate Build Process
|
326 |
-
st.subheader("Automate Build Process")
|
327 |
-
if st.button("Automate"):
|
328 |
-
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
329 |
-
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
|
330 |
-
st.write("Autonomous Build Summary:")
|
331 |
-
st.write(summary)
|
332 |
-
st.write("Next Step:")
|
333 |
-
st.write(next_step)
|
|
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
+
import streamlit as st
|
4 |
+
from transformers.pipelines import pipeline
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, RagRetriever, AutoModelForSeq2SeqLM
|
6 |
import black
|
7 |
from pylint import lint
|
8 |
from io import StringIO
|
|
|
9 |
import sys
|
10 |
+
import torch
|
11 |
+
from huggingface_hub import hf_hub_url, cached_download, HfApi
|
12 |
+
from datetime import datetime
|
13 |
+
import requests
|
14 |
+
import random
|
15 |
+
from huggingface_hub.hf_api import Repository # Assuming this is how you import the Repository class
|
16 |
+
|
17 |
+
# Set your Hugging Face API key here
|
18 |
+
# hf_token = "YOUR_HUGGING_FACE_API_KEY" # Replace with your actual token
|
19 |
+
# Get Hugging Face token from secrets.toml - this line should already be in the main code
|
20 |
+
hf_token = st.secrets["huggingface"]["hf_token"]
|
21 |
+
|
22 |
+
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
23 |
PROJECT_ROOT = "projects"
|
24 |
AGENT_DIRECTORY = "agents"
|
25 |
|
|
|
32 |
st.session_state.workspace_projects = {}
|
33 |
if 'available_agents' not in st.session_state:
|
34 |
st.session_state.available_agents = []
|
35 |
+
if 'current_state' not in st.session_state:
|
36 |
+
st.session_state.current_state = {
|
37 |
+
'toolbox': {},
|
38 |
+
'workspace_chat': {}
|
39 |
+
}
|
40 |
+
|
41 |
+
# List of top downloaded free code-generative models from Hugging Face Hub
|
42 |
+
AVAILABLE_CODE_GENERATIVE_MODELS = [
|
43 |
+
"bigcode/starcoder", # Popular and powerful
|
44 |
+
"Salesforce/codegen-350M-mono", # Smaller, good for quick tasks
|
45 |
+
"microsoft/CodeGPT-small", # Smaller, good for quick tasks
|
46 |
+
"google/flan-t5-xl", # Powerful, good for complex tasks
|
47 |
+
"facebook/bart-large-cnn", # Good for text-to-code tasks
|
48 |
+
]
|
49 |
+
|
50 |
+
# Load pre-trained RAG retriever
|
51 |
+
rag_retriever = RagRetriever.from_pretrained("facebook/rag-token-base") # Use a Hugging Face RAG model
|
52 |
+
|
53 |
+
# Load pre-trained chat model
|
54 |
+
chat_model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/DialoGPT-medium") # Use a Hugging Face chat model
|
55 |
+
|
56 |
+
# Load tokenizer
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
58 |
+
|
59 |
+
def process_input(user_input):
|
60 |
+
# Input pipeline: Tokenize and preprocess user input
|
61 |
+
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
|
62 |
+
attention_mask = tokenizer(user_input, return_tensors="pt").attention_mask
|
63 |
+
|
64 |
+
# RAG model: Generate response
|
65 |
+
with torch.no_grad():
|
66 |
+
output = rag_retriever(input_ids, attention_mask=attention_mask)
|
67 |
+
response = output.generator_outputs[0].sequences[0]
|
68 |
+
|
69 |
+
# Chat model: Refine response
|
70 |
+
chat_input = tokenizer(response, return_tensors="pt")
|
71 |
+
chat_input["input_ids"] = chat_input["input_ids"].unsqueeze(0)
|
72 |
+
chat_input["attention_mask"] = chat_input["attention_mask"].unsqueeze(0)
|
73 |
+
with torch.no_grad():
|
74 |
+
chat_output = chat_model(**chat_input)
|
75 |
+
refined_response = chat_output.sequences[0]
|
76 |
+
|
77 |
+
# Output pipeline: Return final response
|
78 |
+
return refined_response
|
79 |
|
80 |
class AIAgent:
|
81 |
+
def __init__(self, name, description, skills, hf_api=None):
|
82 |
self.name = name
|
83 |
self.description = description
|
84 |
self.skills = skills
|
85 |
+
self._hf_api = hf_api
|
86 |
+
self._hf_token = hf_token # Store the token here
|
87 |
|
88 |
+
@property
|
89 |
+
def hf_api(self):
|
90 |
+
if not self._hf_api and self.has_valid_hf_token():
|
91 |
+
self._hf_api = HfApi(token=self._hf_token)
|
92 |
+
return self._hf_api
|
93 |
+
|
94 |
+
def has_valid_hf_token(self):
|
95 |
+
return bool(self._hf_token)
|
96 |
+
|
97 |
+
async def autonomous_build(self, chat_history, workspace_projects, project_name, selected_model, hf_token):
|
98 |
+
self._hf_token = hf_token
|
99 |
+
# Continuation of previous methods
|
|
|
|
|
|
|
100 |
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
101 |
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
102 |
|
103 |
+
# Analyze chat history and workspace projects to suggest actions
|
104 |
+
# Example:
|
105 |
+
# - Check if the user has requested to create a new file
|
106 |
+
# - Check if the user has requested to install a package
|
107 |
+
# - Check if the user has requested to run a command
|
108 |
+
# - Check if the user has requested to generate code
|
109 |
+
# - Check if the user has requested to translate code
|
110 |
+
# - Check if the user has requested to summarize text
|
111 |
+
# - Check if the user has requested to analyze sentiment
|
112 |
+
|
113 |
+
# Generate a response based on the analysis
|
114 |
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
115 |
|
116 |
+
# Ensure project folder exists
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
118 |
+
if not os.path.exists(project_path):
|
119 |
+
os.makedirs(project_path)
|
120 |
+
|
121 |
+
# Create requirements.txt if it doesn't exist
|
122 |
+
requirements_file = os.path.join(project_path, "requirements.txt")
|
123 |
+
if not os.path.exists(requirements_file):
|
124 |
+
with open(requirements_file, "w") as f:
|
125 |
+
f.write("# Add your project's dependencies here\n")
|
126 |
+
|
127 |
+
# Create app.py if it doesn't exist
|
128 |
+
app_file = os.path.join(project_path, "app.py")
|
129 |
+
if not os.path.exists(app_file):
|
130 |
+
with open(app_file, "w") as f:
|
131 |
+
f.write("# Your project's main application logic goes here\n")
|
132 |
+
|
133 |
+
# Generate GUI code for app.py if requested
|
134 |
+
if "create a gui" in summary.lower():
|
135 |
+
gui_code = generate_code("Create a simple GUI for this application", selected_model)
|
136 |
+
with open(app_file, "a") as f:
|
137 |
+
f.write(gui_code)
|
138 |
+
|
139 |
+
# Run the default build process
|
140 |
+
build_command = "pip install -r requirements.txt && python app.py"
|
141 |
+
try:
|
142 |
+
result = subprocess.run(build_command, shell=True, capture_output=True, text=True, cwd=project_path)
|
143 |
+
st.write(f"Build Output:\n{result.stdout}")
|
144 |
+
if result.stderr:
|
145 |
+
st.error(f"Build Errors:\n{result.stderr}")
|
146 |
+
except Exception as e:
|
147 |
+
st.error(f"Build Error: {e}")
|
148 |
+
|
149 |
+
return summary, next_step
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
def deploy_built_space_to_hf(self):
|
152 |
+
if not self._hf_api or not self._hf_token:
|
153 |
+
raise ValueError("Cannot deploy the Space since no valid Hugoging Face API connection was established.")
|
154 |
+
|
155 |
+
# Assuming you have a function to get the files for your Space
|
156 |
+
repository_name = f"my-awesome-space_{datetime.now().timestamp()}"
|
157 |
+
files = get_built_space_files() # Placeholder - you'll need to define this function
|
158 |
+
|
159 |
+
# Create the Space
|
160 |
+
create_space(self.hf_api, repository_name, "Description", True, files)
|
161 |
+
|
162 |
+
st.markdown("## Congratulations! Successfully deployed Space 🚀 ##")
|
163 |
+
st.markdown(f"[Check out your new Space here](https://huggingface.co/spaces/{repository_name})")
|
164 |
+
|
165 |
+
|
166 |
+
# Add any missing functions from your original code (e.g., get_built_space_files)
|
167 |
+
def get_built_space_files():
|
168 |
+
# Replace with your logic to gather the files you want to deploy
|
169 |
+
return {
|
170 |
+
"app.py": "# Your Streamlit app code here",
|
171 |
+
"requirements.txt": "streamlit\ntransformers"
|
172 |
+
# Add other files as needed
|
173 |
+
}
|
174 |
+
|
175 |
+
# ... (Rest of your existing functions: save_agent_to_file, load_agent_prompt,
|
176 |
+
# create_agent_from_text, chat_interface_with_agent, terminal_interface,
|
177 |
+
# code_editor_interface, summarize_text, sentiment_analysis, translate_code,
|
178 |
+
# generate_code, chat_interface, workspace_interface, add_code_to_workspace)
|
179 |
+
|
180 |
+
def create_space(api, name, description, public, files, entrypoint="launch.py"):
|
181 |
+
url = f"{hf_hub_url()}spaces/{name}/prepare-repo"
|
182 |
+
headers = {"Authorization": f"Bearer {api.access_token}"}
|
183 |
+
payload = {
|
184 |
+
"public": public,
|
185 |
+
"gitignore_template": "web",
|
186 |
+
"default_branch": "main",
|
187 |
+
"archived": False,
|
188 |
+
"files": []
|
189 |
+
}
|
190 |
+
for filename, contents in files.items():
|
191 |
+
data = {
|
192 |
+
"content": contents,
|
193 |
+
"path": filename,
|
194 |
+
"encoding": "utf-8",
|
195 |
+
"mode": "overwrite" if "#\{random.randint(0, 1)\}" not in contents else "merge",
|
196 |
+
}
|
197 |
+
payload["files"].append(data)
|
198 |
+
response = requests.post(url, json=payload, headers=headers)
|
199 |
+
response.raise_for_status()
|
200 |
+
location = response.headers.get("Location")
|
201 |
+
# wait_for_processing(location, api) # You might need to implement this if it's not already defined
|
202 |
+
|
203 |
+
return Repository(name=name, api=api)
|
204 |
|
205 |
# Streamlit App
|
206 |
st.title("AI Agent Creator")
|
|
|
209 |
st.sidebar.title("Navigation")
|
210 |
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
211 |
|
212 |
+
# ... (Rest of your Streamlit app logic, including the 'Automate' button callback)
|
213 |
+
|
214 |
if app_mode == "AI Agent Creator":
|
215 |
# AI Agent Creator
|
216 |
st.header("Create an AI Agent from Text")
|
|
|
223 |
st.success(f"Agent '{agent_name}' created and saved successfully.")
|
224 |
st.session_state.available_agents.append(agent_name)
|
225 |
|
226 |
+
# ... (Rest of your Streamlit app logic for other app modes)
|
227 |
+
|
228 |
+
# Using the modified and extended class and functions, update the callback for the 'Automate' button in the Streamlit UI:
|
229 |
+
if st.button("Automate", args=(hf_token,)):
|
230 |
+
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
231 |
+
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects, project_name, selected_model, hf_token)
|
232 |
+
st.write("Autonomous Build Summary:")
|
233 |
+
st.write(summary)
|
234 |
+
st.write("Next Step:")
|
235 |
+
st.write(next_step)
|
236 |
+
|
237 |
+
# If everything went well, proceed to deploy the Space
|
238 |
+
if agent._hf_api and agent.has_valid_hf_token():
|
239 |
+
agent.deploy_built_space_to_hf()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|