DevToolKit / app.py
acecalisto3's picture
Update app.py
90b521b verified
raw
history blame
13.8 kB
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableSequence
from langchain_community.llms import HuggingFaceEndpoint
from huggingface_hub.inference_api import InferenceApi as InferenceClient
import streamlit as st
from prompts import (
ACTION_PROMPT,
ADD_PROMPT,
COMPRESS_HISTORY_PROMPT,
LOG_PROMPT,
LOG_RESPONSE,
MODIFY_PROMPT,
PREFIX,
READ_PROMPT,
TASK_PROMPT,
UNDERSTAND_TEST_RESULTS_PROMPT,
WEB_DEV_SYSTEM_PROMPT,
AI_SYSTEM_PROMPT,
WEB_DEV,
PYTHON_CODE_DEV,
HUGGINGFACE_FILE_DEV
)
from utils import (
parse_action,
parse_file_content,
read_python_module_structure,
extract_imports, # Unused import, consider removing or using
get_file, # Unused import, consider removing or using
)
# --- Constants ---
AGENT_TYPES = [
"Task Executor",
"Information Retriever",
"Decision Maker",
"Data Analyzer",
]
TOOL_TYPES = [
"Web Scraper",
"Database Connector",
"API Caller",
"File Handler",
"Text Processor",
]
VERBOSE = False
MAX_HISTORY = 100
MODEL = "mistralai/Mixtral-8x7B-Instruct-v0.1" # Consider using a smaller model
# --- Initialize Hugging Face client ---
client = InferenceClient(MODEL)
# --- Classes ---
class Agent:
def __init__(self, name: str, agent_type: str, complexity: int):
self.name = name
self.type = agent_type
self.complexity = complexity
self.tools: List[Tool] = []
def add_tool(self, tool: "Tool"):
self.tools.append(tool)
def __str__(self):
return f"{self.name} ({self.type}) - Complexity: {self.complexity}"
class Tool:
def __init__(self, name: str, tool_type: str):
self.name = name
self.type = tool_type
def __str__(self):
return f"{self.name} ({self.type})"
class Pypelyne:
def __init__(self):
self.agents: List[Agent] = []
self.tools: List[Tool] = []
self.history: str = ""
self.task: str = ""
self.purpose: str = ""
self.directory: str = ""
def add_agent(self, agent: Agent):
self.agents.append(agent)
def add_tool(self, tool: Tool):
self.tools.append(tool)
def generate_chat_app(self) -> str:
time.sleep(2) # Simulate processing time
return f"Chat app generated with {len(self.agents)} agents and {len(self.tools)} tools."
def run_gpt(
self, prompt_template: str, stop_tokens: List[str], max_tokens: int, **prompt_kwargs
) -> str:
content = (
PREFIX.format(
module_summary=read_python_module_structure(self.directory)[0],
purpose=self.purpose,
)
+ prompt_template.format(**prompt_kwargs)
)
if VERBOSE:
print(LOG_PROMPT.format(content))
try:
stream = client.text_generation(
prompt=content,
max_new_tokens=max_tokens,
stop_sequences=stop_tokens if stop_tokens else None,
do_sample=True,
temperature=0.7,
)
resp = "".join(token for token in stream)
except Exception as e:
print(f"Error in run_gpt: {e}")
resp = f"Error: {e}"
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_history(self):
resp = self.run_gpt(
COMPRESS_HISTORY_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=512,
task=self.task,
history=self.history,
)
self.history = f"observation: {resp}\n"
def run_action(self, action_name: str, action_input: str) -> str:
if action_name == "COMPLETE":
return "Task completed."
if len(self.history.split("\n")) > MAX_HISTORY:
if VERBOSE:
print("COMPRESSING HISTORY")
self.compress_history()
action_funcs = {
"MAIN": self.call_main,
"UPDATE-TASK": self.call_set_task,
"MODIFY-FILE": self.call_modify,
"READ-FILE": self.call_read,
"ADD-FILE": self.call_add,
"TEST": self.call_test,
}
if action_name not in action_funcs:
return f"Unknown action: {action_name}"
print(f"RUN: {action_name} {action_input}")
return action_funcs[action_name](action_input)
def call_main(self, action_input: str) -> str:
resp = self.run_gpt(
ACTION_PROMPT,
stop_tokens=["observation:", "task:"],
max_tokens=256,
task=self.task,
history=self.history,
)
lines = resp.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
self.history += f"{line}\n"
elif line.startswith("action: "):
action_name, action_input = parse_action(line)
self.history += f"{line}\n"
return self.run_action(action_name, action_input)
return "No valid action found."
def call_set_task(self, action_input: str) -> str:
self.task = (
self.run_gpt(
TASK_PROMPT,
stop_tokens=[],
max_tokens=64,
task=self.task,
history=self.history,
)
.strip("\n")
.strip()
)
self.history += f"observation: task has been updated to: {self.task}\n"
return f"Task updated: {self.task}"
def call_modify(self, action_input: str) -> str:
if not os.path.exists(action_input):
self.history += "observation: file does not exist\n"
return "File does not exist."
content = read_python_module_structure(self.directory)[1]
f_content = (
content[action_input]
if content[action_input]
else "< document is empty >"
)
resp = self.run_gpt(
MODIFY_PROMPT,
stop_tokens=["action:", "thought:", "observation:"],
max_tokens=2048,
task=self.task,
history=self.history,
file_path=action_input,
file_contents=f_content,
)
new_contents, description = parse_file_content(resp)
if new_contents is None:
self.history += "observation: failed to modify file\n"
return "Failed to modify file."
with open(action_input, "w") as f:
f.write(new_contents)
self.history += f"observation: file successfully modified\n"
self.history += f"observation: {description}\n"
return f"File modified: {action_input}"
def call_read(self, action_input: str) -> str:
if not os.path.exists(action_input):
self.history += "observation: file does not exist\n"
return "File does not exist."
content = read_python_module_structure(self.directory)[1]
f_content = (
content[action_input]
if content[action_input]
else "< document is empty >"
)
resp = self.run_gpt(
READ_PROMPT,
stop_tokens=[],
max_tokens=256,
task=self.task,
history=self.history,
file_path=action_input,
file_contents=f_content,
).strip("\n")
self.history += f"observation: {resp}\n"
return f"File read: {action_input}"
def call_add(self, action_input: str) -> str:
d = os.path.dirname(action_input)
if not d.startswith(self.directory):
self.history += (
f"observation: files must be under directory {self.directory}\n"
)
return f"Invalid directory: {d}"
elif not action_input.endswith(".py"):
self.history += "observation: can only write .py files\n"
return "Only .py files are allowed."
else:
if d and not os.path.exists(d):
os.makedirs(d)
if not os.path.exists(action_input):
resp = self.run_gpt(
ADD_PROMPT,
stop_tokens=["action:", "thought:", "observation:"],
max_tokens=2048,
task=self.task,
history=self.history,
file_path=action_input,
)
new_contents, description = parse_file_content(resp)
if new_contents is None:
self.history += "observation: failed to write file\n"
return "Failed to write file."
with open(action_input, "w") as f:
f.write(new_contents)
self.history += "observation: file successfully written\n"
self.history += f"observation: {description}\n"
return f"File added: {action_input}"
else:
self.history += "observation: file already exists\n"
return "File already exists."
def call_test(self, action_input: str) -> str:
result = subprocess.run(
["python", "-m", "pytest", "--collect-only", self.directory],
capture_output=True,
text=True,
)
if result.returncode != 0:
self.history += f"observation: there are no tests! Test should be written in a test folder under {self.directory}\n"
return "No tests found."
result = subprocess.run(
["python", "-m", "pytest", self.directory],
capture_output=True,
text=True,
)
if result.returncode == 0:
self.history += "observation: tests pass\n"
return "All tests passed."
resp = self.run_gpt(
UNDERSTAND_TEST_RESULTS_PROMPT,
stop_tokens=[],
max_tokens=256,
task=self.task,
history=self.history,
stdout=result.stdout[:5000],
stderr=result.stderr[:5000],
)
self.history += f"observation: tests failed: {resp}\n"
return f"Tests failed: {resp}"
# --- Global Pypelyne Instance ---
pypelyne = Pypelyne()
# --- Helper Functions ---
def create_agent(name: str, agent_type: str, complexity: int) -> Agent:
agent = Agent(name, agent_type, complexity)
pypelyne.add_agent(agent)
return agent
def create_tool(name: str, tool_type: str) -> Tool:
tool = Tool(name, tool_type)
pypelyne.add_tool(tool)
return tool
# --- Streamlit App Code ---
def main():
st.title("🧠 Pypelyne: Your AI-Powered Coding Assistant")
# --- Sidebar ---
st.sidebar.title("βš™οΈ Settings")
if "directory" not in st.session_state:
st.session_state.directory = "."
pypelyne.directory = st.sidebar.text_input(
"Project Directory:",
value=st.session_state.directory,
help="Path to your coding project",
)
st.session_state.directory = pypelyne.directory # Update session state
if "purpose" not in st.session_state:
st.session_state.purpose = ""
pypelyne.purpose = st.sidebar.text_area(
"Project Purpose:",
value=st.session_state.purpose,
help="Describe the purpose of your coding project.",
)
st.session_state.purpose = pypelyne.purpose # Update session state
# --- Agent and Tool Management ---
st.sidebar.header("πŸ€– Agents")
if "agents" not in st.session_state:
st.session_state.agents = []
show_agent_creation = st.sidebar.expander(
"Create New Agent", expanded=False
)
with show_agent_creation:
agent_name = st.text_input("Agent Name:")
agent_type = st.selectbox("Agent Type:", AGENT_TYPES)
agent_complexity = st.slider("Complexity (1-5):", 1, 5, 3)
if st.button("Add Agent"):
create_agent(agent_name, agent_type, agent_complexity)
st.session_state.agents = pypelyne.agents # Update session state
st.sidebar.header("πŸ› οΈ Tools")
if "tools" not in st.session_state:
st.session_state.tools = []
show_tool_creation = st.sidebar.expander("Create New Tool", expanded=False)
with show_tool_creation:
tool_name = st.text_input("Tool Name:")
tool_type = st.selectbox("Tool Type:", TOOL_TYPES)
if st.button("Add Tool"):
create_tool(tool_name, tool_type)
st.session_state.tools = pypelyne.tools # Update session state
# --- Display Agents and Tools ---
st.sidebar.subheader("Active Agents:")
for agent in st.session_state.agents:
st.sidebar.write(f"- {agent}")
st.sidebar.subheader("Available Tools:")
for tool in st.session_state.tools:
st.sidebar.write(f"- {tool}")
# --- Main Content Area ---
st.header("πŸ’» Code Interaction")
if "task" not in st.session_state:
st.session_state.task = ""
task_input = st.text_area(
"🎯 Task:",
value=st.session_state.task,
help="Describe the coding task you want to perform.",
)
if task_input:
pypelyne.task = task_input
st.session_state.task = pypelyne.task # Update session state
user_input = st.text_input(
"πŸ’¬ Your Input:", help="Provide instructions or ask questions."
)
if st.button("Execute"):
if user_input:
with st.spinner("Pypelyne is working..."):
response = pypelyne.run_action("MAIN", user_input)
st.write("Pypelyne Says: ", response)
# --- Run the Streamlit app ---
if __name__ == "__main__":
main()